Wind Tunnel Studies of Buildings and Structures
Wind Tunnel Studies of Buildings and Structures

Task Committee on Wind Tunnel Testing of Buildings and Structures
Aerodynamics Committee
Aerospace Division

Contributors:
J.E. Cermak, A.G. Davenport, F.H. Durgin,
P.A. Irwin, N. Isyumov, J.A. Peterka, S.R. Ramsay,
T.A. Reinhold R.H. Scanlan, T. Stathopoulos,
A.C. Steckley, H. Tieleman, and P.J. Vickery

Editor:
Nicholas Isyumov

Published by
American Society of Civil Engineers
1801 Alexander Bell Drive
Reston, Virginia 20191-4400
Abstract: This Manual of Practice provides guidelines to assist architects, building code officials, engineers, town planners, and others who become involved with the wind tunnel model testing of buildings and structures and/or the evaluation and use of information from such tests. Many Codes of Practice now permit such studies as alternative approaches for the design against wind action. Part 1 updates the Manual, which was first published in 1987, to reflect new developments in wind engineering and adds a chapter on atmospheric dispersion of exhausts and pollutants around buildings and in built-up areas. Part 2 is a Commentary which contains detailed information on specific methodologies of wind tunnel testing and the use of such data to predict the performance of full-scale buildings and structures. Rigorous model similitude requirements must be followed in order to assure that the findings of wind tunnel model studies are representative. A Glossary and an extensive list of references are included. This Manual has been prepared by a special Task group of the Aerodynamics Committee of the Aerospace Division and includes contributions from some of North America's leading wind engineering experts and laboratories.

Library of Congress Cataloging-in-Publication Data

Wind tunnel studies of buildings and structures / Aerospace Division of the American Society of Civil Engineers.

p. cm.—(ASCE manuals and reports on engineering practice ; no. 67)
Includes bibliographical references and index.
ISBN 0-7844-0319-8

IN PROCESS

624.175—dc21 98-44103
98-44103

CIP

The material presented in this publication has been prepared in accordance with generally recognized engineering principles and practices, and is for general information only. This information should not be used without first securing competent advice with respect to its suitability for any general or specific application.

The contents of this publication are not intended to be and should not be construed to be a standard of the American Society of Civil Engineers (ASCE) and are not intended for use as a reference in purchase of specifications, contracts, regulations, statutes, or any other legal document.

No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE.

ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefore.

Anyone utilizing this information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

Photocopies: Authorization to photocopy material for internal or personal use under circumstances not falling within the fair use provisions of the Copyright Act is granted by ASCE to libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of $8.00 per chapter plus $.50 per page is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923. The identification for ASCE Books is 0-7844-0319-8/99/$8.00 + $.50 per page. Requests for special permission or bulk copying should be addressed to Permissions & Copyright Department, ASCE.

Copyright © 1999 by the American Society of Civil Engineers.
All Rights Reserved.
Library of Congress Catalog Card No: 98-44103
ISBN 0-7844-0319-8
Manufactured in the United States of America
A manual or report in this series consists of an orderly presentation of facts on a particular subject, supplemented by an analysis of limitations and applications of these facts. It contains information useful to the average engineer in his everyday work, rather than the findings that may be useful only occasionally or rarely. It is not in any sense a "standard," however; nor is it so elementary or so conclusive as to provide a "rule of thumb" for non-engineers.

Furthermore, material in this series, in distinction from a paper (which expressed only one person's observations or opinions), is the work of a committee or group selected to assemble and express information on a specific topic. As often as practicable the committee is under the direction of one or more of the Technical Divisions and Councils, and the product evolved has been subjected to review by the Executive Committee of the Division or Council. As a step in the process of this review, proposed manuscripts are often brought before the members of the Technical Divisions and Councils for comment, which may serve as the basis for improvement. When published, each work shows the names of the committees by which it was compiled and indicates clearly the several processes through which it has passed in review, in order that its merit may be definitely understood.

In February 1962 (and revised in April 1982) the Board of Direction voted to establish:

A series entitled "Manuals and Reports on Engineering Practice," to include the Manuals published and authorized to date, future Manuals of Professional Practice, and Reports on Engineering Practice. All such Manual or Report material of the Society would have been refereed in a manner approved by the Board Committee on Publications and would be bound, with applicable discussion, in books similar to past Manuals. Numbering would be consecutive and would be a continuation of present Manual numbers. In some cases of reports of joint committees, bypassing of Journal publications may be authorized.
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Filtering Materials for Sewage Treatment Plants</td>
</tr>
<tr>
<td>14</td>
<td>Accommodation of Utility Plant Within the Rights-of-Way of Urban Streets and Highways</td>
</tr>
<tr>
<td>34</td>
<td>Definitions of Surveying and Associated Terms</td>
</tr>
<tr>
<td>35</td>
<td>A List of Translations of Foreign Literature on Hydraulics</td>
</tr>
<tr>
<td>37</td>
<td>Design and Construction of Sanitary and Storm Sewers</td>
</tr>
<tr>
<td>40</td>
<td>Ground Water Management</td>
</tr>
<tr>
<td>41</td>
<td>Plastic Design in Steel: A Guide and Commentary</td>
</tr>
<tr>
<td>36</td>
<td>Pipeline Route Selection for Rural and Cross-Country Pipelines</td>
</tr>
<tr>
<td>47</td>
<td>Selected Abstracts on Structural Applications of Plastics</td>
</tr>
<tr>
<td>49</td>
<td>Urban Planning Guide</td>
</tr>
<tr>
<td>50</td>
<td>Planning and Design Guidelines for Small Craft Harbors</td>
</tr>
<tr>
<td>51</td>
<td>Survey of Current Structural Research</td>
</tr>
<tr>
<td>52</td>
<td>Guide for the Design of Steel Transmission Towers</td>
</tr>
<tr>
<td>53</td>
<td>Criteria for Maintenance of Multilane Highways</td>
</tr>
<tr>
<td>54</td>
<td>Sedimentation Engineering</td>
</tr>
<tr>
<td>55</td>
<td>Guide to Employment Conditions for Civil Engineers</td>
</tr>
<tr>
<td>57</td>
<td>Management, Operation and Maintenance of Irrigation and Drainage Systems</td>
</tr>
<tr>
<td>59</td>
<td>Computer Pricing Practices</td>
</tr>
<tr>
<td>60</td>
<td>Gravity Sanitary Sewer Design and Construction</td>
</tr>
<tr>
<td>62</td>
<td>Existing Sewer Evaluation and Rehabilitation</td>
</tr>
<tr>
<td>63</td>
<td>Structural Plastics Design Manual</td>
</tr>
<tr>
<td>64</td>
<td>Manual on Engineering Surveying</td>
</tr>
<tr>
<td>65</td>
<td>Construction Cost Control</td>
</tr>
<tr>
<td>66</td>
<td>Structural Plastics Selection Manual</td>
</tr>
<tr>
<td>67</td>
<td>Wind Tunnel Studies of Buildings and Structures</td>
</tr>
<tr>
<td>68</td>
<td>Aeration: A Wastewater Treatment Process</td>
</tr>
<tr>
<td>69</td>
<td>Sulfide in Wastewater Collection and Treatment Systems</td>
</tr>
<tr>
<td>70</td>
<td>Evapotranspiration and Irrigation Water Requirements</td>
</tr>
<tr>
<td>71</td>
<td>Agricultural Salinity Assessment and Management</td>
</tr>
<tr>
<td>72</td>
<td>Design of Steel Transmission Pole Structures</td>
</tr>
<tr>
<td>73</td>
<td>Quality in the Constructed Project: A Guide for Owners, Designers, and Constructors</td>
</tr>
<tr>
<td>74</td>
<td>Guidelines for Electrical Transmission Line Structural Loading</td>
</tr>
<tr>
<td>75</td>
<td>Right-of-Way Surveying</td>
</tr>
<tr>
<td>76</td>
<td>Design of Municipal Wastewater Treatment Plants</td>
</tr>
<tr>
<td>77</td>
<td>Design and Construction of Urban Stormwater Management Systems</td>
</tr>
<tr>
<td>78</td>
<td>Structural Fire Protection</td>
</tr>
<tr>
<td>79</td>
<td>Steel Penstocks</td>
</tr>
<tr>
<td>80</td>
<td>Ship Channel Design</td>
</tr>
<tr>
<td>81</td>
<td>Guidelines for Cloud Seeding to Augment Precipitation</td>
</tr>
<tr>
<td>82</td>
<td>Odor Control in Wastewater Treatment Plants</td>
</tr>
<tr>
<td>83</td>
<td>Environmental Site Investigation</td>
</tr>
<tr>
<td>84</td>
<td>Mechanical Connections in Wood Structures</td>
</tr>
<tr>
<td>85</td>
<td>Quality of Ground Water</td>
</tr>
<tr>
<td>86</td>
<td>Operation and Maintenance of Ground Water Facilities</td>
</tr>
<tr>
<td>87</td>
<td>Urban Runoff Quality Manual</td>
</tr>
<tr>
<td>88</td>
<td>Management of Water Treatment Plant Residuals</td>
</tr>
<tr>
<td>89</td>
<td>Pipeline Crossings</td>
</tr>
<tr>
<td>90</td>
<td>Guide to Structural Optimization</td>
</tr>
<tr>
<td>91</td>
<td>Design of Guyed Electrical Transmission Structures</td>
</tr>
<tr>
<td>92</td>
<td>Manhole Inspection and Rehabilitation</td>
</tr>
<tr>
<td>93</td>
<td>Crane Safety on Construction Sites</td>
</tr>
<tr>
<td>94</td>
<td>Inland Navigation: Locks, Dams, and Channels</td>
</tr>
<tr>
<td>95</td>
<td>Urban Subsurface Drainage</td>
</tr>
<tr>
<td>96</td>
<td>Guide to Improved Earthquake Performance of Electric Power Systems</td>
</tr>
<tr>
<td>97</td>
<td>Hydraulic Modeling: Concepts and Practice</td>
</tr>
</tbody>
</table>
FOREWORD

The first edition of the Manual of Practice for Wind Tunnel Studies of Buildings and Structures was published in 1987. The wind engineering field continues to evolve, and this update of that manual emphasizes the circumstances under which tests might be needed, the types of tests that might be performed and the physical principles that need to be followed to ensure meaningful results.

This edition of the Manual has two parts. Part 1 is an updated version of ASCE Manual 67 with an added section on Atmospheric Dispersion Around Buildings. Part 2 is a Commentary, which provides supporting information on the methodologies needed and examples of typical tests. It also includes a bibliography.

This Manual has been prepared by a Task Committee formed under the auspices of the Aerodynamics Committee of the Aerospace Division of the ASCE. Members of this Task Committee, who have contributed to the preparation of this Manual are:

Frank H. Durgin, Chairman
Wright Brothers Wind Tunnel
M.I.T., Building 17-110
Cambridge, Massachusetts, U.S.A.
02139
Tel: (617) 253-2270
FAX: (617) 258-7566

Nicholas Isyumov, Vice-Chair and Editor
Boundary Layer Wind Tunnel Laboratory
The University of Western Ontario
London, Ontario N6A 5B9, Canada
Tel: (519) 661-3338
FAX: (519) 661-3339
Jack E. Cermak
Fluid Dynamics and Diffusion Laboratory
Colorado State University
Fort Collins, Colorado, U.S.A. 805243
Tel: (970) 221-3371
FAX: (970) 221-3124

Alan G. Davenport
Boundary Layer Wind Tunnel Laboratory
The University of Western Ontario
London, Ontario N6A 5B9, Canada
Tel: (519) 661-3338
FAX: (519) 661-3339

Peter A. Irwin
Rowan Williams Davies & Irwin Inc.
650 Woodlawn Road West
Guelph, Ontario N1K 1B8, Canada
Tel: (519) 823-1311
FAX: (519) 823-1316

Jon A. Peterka
Cermak Peterka Petersen Inc.
1415 Blue Spruce Drive
Fort Collins, Colorado, U.S.A. 80524
Tel: (970) 221-3371
FAX: (970) 221-3124

Stephen R. Ramsay
U.S. Filter
1370-885 W. Georgia Street
Vancouver, British Columbia V6C 3E8, Canada
Tel: (604) 669-4422
FAX: (604) 669-5951

Timothy A. Reinhold
Department of Civil Engineering
Clemson University
110 Lowry Hall
Clemson, South Carolina, U.S.A. 29631
Tel: (864) 656-3326
FAX: (864) 656-2670

Robert H. Scanlan
Dept. of Civil Engineering
G.W.C. Whiting School of Engineering
202 Latrobe Hall
The Johns Hopkins University
Homewood Campus
Baltimore, Maryland, U.S.A. 21218-2686
Tel: (410) 516-7138
FAX: (410) 516-7473

Theodore Stathopoulos
Centre for Building Studies
Concordia University
1455 De Maisonneuve Blvd. West
Montreal, Quebec H3G 1M8, Canada
Tel: (514) 848-3186
FAX: (514) 848-7965

Andrew C. Steckley
QuantumLynx
202 Michael Grove Avenue
Bozeman, Montana, U.S.A. 59718
Tel: (406) 582-9745
FAX: (406) 582-9745

Henry Tieleman
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, Virginia, U.S.A. 24061
Tel: (540) 231-6651
FAX: (540) 231-4574

Peter J. Vickery
Applied Research Associates
811 Spring Forest Road, Suite 100
Raleigh, North Carolina, U.S.A. 27609
Tel: (919) 876-0018
FAX: (919) 878-3672
ACKNOWLEDGMENTS

The Task Committee for the Manual has received many valuable suggestions and comments over the past several years. Many came from other members of the Aerodynamics Committee of the Aerospace Division of the ASCE. Others came as a result of presentations of the Manual at ASCE Conferences, and its circulation to members of the wind engineering and wind tunnel testing communities and to interested engineers and architects. The contributions received are too numerous to permit specific mention. The Committee would therefore like to take this opportunity to extend its thanks and appreciation to all contributors.

Also acknowledged are the many valuable suggestions and comments by members of the ASCE Blue Ribbon Review Panel who reviewed this document and generously shared their experience and viewpoints with the Committee. These very much appreciated reviews and scrutiny have greatly improved this Manual.

Finally, the Committee and, in particular, the Editor of the Manual would like to acknowledge the contributions of Mrs. Tanya Spruyt of the Boundary Layer Wind Tunnel Laboratory of The University of Western Ontario, who typed the contributions from various Committee members and who helped to assemble the document. This involved several iterations over a number of years and included numerous cycles of corrections and improvements. Her patience and special effort are very much appreciated.
CONTENTS

FOREWORD ... v
ACKNOWLEDGMENTS .. vii

WIND TUNNEL STUDIES OF BUILDINGS AND STRUCTURES

1 INTRODUCTION .. 3
 1.1 Objectives ... 3
 1.2 Areas of Application .. 4
 1.3 Common Techniques ... 4

2 MODELING THE WIND ... 9
 2.1 Wind and Its Origin ... 9
 2.2 Wind Tunnel Simulation of the Atmospheric Boundary Layer (ABL) 9
 2.3 Approach Wind .. 10
 2.4 Topographic Models .. 11
 2.5 Near Field ... 11
 2.6 Influence of Specific Structures 12
 2.7 Selection of Geometric Scale 12
 2.7.1 Consistent Modeling of All Lengths 12
 2.7.2 Blockage Considerations 14
 2.8 Selection of Velocity Scale 14
 2.9 Reynolds Number Scaling 15

3 PEDESTRIAN LEVEL WINDS 17

4 LOCAL AND PANEL WIND LOADS 19
 4.1 General ... 19
 4.2 External Pressures ... 20
 4.2.1 Local Pressures ... 20
 4.2.2 Panel Wind Loads 21
 4.3 Internal Pressures .. 22
 4.4 Roof Pressures .. 23
5 OVERALL WIND LOADS AND WIND-INDUCED RESPONSES
5.1 General .. 25
5.2 Measurement Techniques 26
 5.2.1 Pressure Averaging 26
 5.2.2 Direct Load Measurements 26
 5.2.3 High-Frequency Force Balance Technique 27
5.3 Analysis Methods 28
6 AEROELASTIC SIMULATIONS 29
 6.1 General ... 29
 6.2 Detailed Requirements 29
 6.2.1 Mass Modeling 30
 6.2.2 Damping 30
 6.2.3 Stiffness Scaling 30
 6.3 Types of Aeroelastic Models 32
 6.3.1 Replica Models 32
 6.3.2 Equivalent Models 32
 6.3.3 Section Models 33
 6.4 Tall Buildings 33
 6.5 Towers, Masts, and Chimneys 34
 6.6 Cooling Towers 34
 6.7 Flexible Roofs 35
 6.8 Long-Span Bridges 35
 6.9 Cables and Transmission Lines 36
7 DISPERSION AROUND BUILDINGS 37
 7.1 General ... 37
 7.2 Problem Areas 37
 7.3 Similarity Requirements 39
 7.3.1 Boundary Layer Modeling 39
 7.3.2 Source Modeling 39
8 INSTRUMENTATION 41
9 QUALITY ASSURANCE OF WIND TUNNEL DATA 43
10 WIND CLIMATE AND PREDICTION OF FULL-SCALE BEHAVIOR 45
 COMMENTARY ON WIND TUNNEL STUDIES
 OF BUILDINGS AND STRUCTURES
 C1 INTRODUCTION 51
 C2 MODELING THE WIND 53
 C2.1 General 53
 C2.2 The ABL 54
 C2.2.1 Flat Uniformly Rough (FUR) Terrain 54
 C2.2.2 Non-FUR Terrain 60
 C2.2.3 Non-Boundary Layer Atmospheric Flows 61
C2.3 Modeling Criteria ... 62
 C2.3.1 Dynamic and Kinematic Similarity 62
 C2.3.2 Geometric Similarity 63
 C2.3.3 Modeling of Flow Over Complex Topography 64
C2.4 Boundary Layer Wind Tunnels (BLWTs) for Modeling the Wind 65
 C2.4.1 Characteristics of BLWTs 65
 C2.4.2 Types of BLWTs ... 66
 C2.4.3 Augmentation of Boundary-Layer Height zg 70
 C2.4.4 Augmentation of ASL Height zs 75
C2.5 Wind Simulations in Short Test Section Wind Tunnels 77

C3 PEDESTRIAN LEVEL WINDS .. 83
 C3.1 Introduction .. 83
 C3.2 Approach Flow, Modeling, and Similarity 83
 C3.3 Measurement Techniques 84
 C3.3.1 Introduction .. 84
 C3.3.2 The Erosion Technique 85
 C3.3.3 Hot-Wires and Hot-Films 86
 C3.3.4 The Irwin Probe .. 86
 C3.4 Criteria .. 87
 C3.5 Comparisons with Full-Scale Measurements 89

C4 LOCAL AND PANEL WIND LOADS 91
 C4.1 General .. 91
 C4.2 Scaling Wind Tunnel Results to Full Scale 91
 C4.2.1 Local Pressures 92
 C4.2.2 Panel Wind Loads 93
 C4.3 Internal Pressures ... 94
 C4.4 Roof Pressures ... 95

C5 OVERALL WIND LOADS AND WIND-INDUCED RESPONSE 97
 C5.1 General .. 97
 C5.2 Measurement Techniques 98
 C5.2.1 Pressure Averaging 98
 C5.2.2 Direct Load Measurements 102
 C5.2.3 Miscellaneous ... 106

C6 AEROELASTIC SIMULATIONS .. 109
 C6.1 General .. 109
 C6.2 Additional Requirements 110
 C6.3 Types of Aeroelastic Models 111
 C6.3.1 Replica Models ... 111
 C6.3.2 Equivalent Models 115
 C6.3.3 Section Models ... 119
 C6.4 Aeroelastic Modeling of Tall Buildings 120
 C6.4.1 Introduction .. 120
 C6.4.2 Traditional "Stick" Aeroelastic Models 120
 C6.4.3 Multi-Degree-of-Freedom Models 122
This page intentionally left blank
Part 1

WIND TUNNEL STUDIES
OF BUILDINGS AND STRUCTURES
This page intentionally left blank
Chapter 1
INTRODUCTION

1.1 OBJECTIVES

This Manual of practice provides guidelines intended to assist architects and engineers who may become involved with the wind tunnel model testing of buildings and structures. Included are procedures required to provide representative information on wind effects experienced during particular wind conditions, and methods for using such information to provide statistical predictions of full-scale behavior. ASCE Standard 7 (Formerly ANSI A58.1) and many other codes of practice now permit or require wind tunnel model studies for the design of buildings and structures against the action of wind. In some situations, such studies may be desirable in order to improve the reliability of performance, economy of design, or both.

The first ASCE Manual of Practice for Wind Tunnel Model Studies of Buildings and Structures was printed in 1987. Part 1 of this updated Manual reflects new developments in the wind engineering field. The Commentary in Part 2 contains detailed information on specific methodology and specific aspects of wind tunnel testing. Added to the Manual is a section dealing with wind tunnel studies of the dispersion of pollutants around buildings and in urban environments. If in doubt, the reader should seek the assistance of an established wind tunnel testing laboratory or a recognized wind engineering specialist. Finally, approval of the use of wind tunnel model data for design may rest with local code authorities. Appropriate inquiries about any special requirements or limitations would therefore be prudent.

The testing of prototype buildings and components and mock-ups of curtain-wall systems are outside the scope of this Manual. Model studies of the effects of wind on the deposition and drifting of snow on roofs and around buildings and structures also are not covered.