Pipe Bursting Projects

Prepared by
The Pipe Bursting Task Force of
the Trenchless Installation of Pipelines (TIPS)
Committee of the American Society of Civil Engineers

Edited by
Dr. Mohammad Najafi, P.E.
A manual or report in this series consists of an orderly presentation of facts on a particular subject, supplemented by an analysis of limitations and applications of these facts. It contains information useful to the average engineer in his or her everyday work, rather than findings that may be useful only occasionally or rarely. It is not in any sense a “standard,” however; nor is it so elementary or so conclusive as to provide a “rule of thumb” for nonengineers.

Furthermore, material in this series, in distinction from a paper (which expresses only one person’s observations or opinions), is the work of a committee or group selected to assemble and express information on a specific topic. As often as practicable, the committee is under the direction of one or more of the Technical Divisions and Councils, and the product evolved has been subjected to review by the Executive Committee of the Division or Council. As a step in the process of this review, proposed manuscripts are often brought before the members of the Technical Divisions and Councils for comment, which may serve as the basis for improvement. When published, each work shows the names of the committees by which it was compiled and indicates clearly the several processes through which it has passed in review, in order that its merit may be definitely understood.

In February 1962 (and revised in April 1982) the Board of Direction voted to establish a series entitled “Manuals and Reports on Engineering Practice,” to include the Manuals published and authorized to date, future Manuals of Professional Practice, and Reports on Engineering Practice. All such Manual or Report material of the Society would have been refereed in a manner approved by the Board Committee on Publications and would be bound, with applicable discussion, in books similar to past Manuals. Numbering would be consecutive and would be a continuation of present Manual numbers. In some cases of reports of joint committees, bypassing of Journal publications may be authorized.
MANUALS AND REPORTS ON ENGINEERING PRACTICE

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Filtering Materials for Sewage Treatment Plants</td>
<td>78</td>
<td>Structural Fire Protection</td>
</tr>
<tr>
<td>14</td>
<td>Accommodation of Utility Plant Within the Rights-of-Way of Urban Streets and Highways</td>
<td>79</td>
<td>Steel Penstocks</td>
</tr>
<tr>
<td>35</td>
<td>A List of Translations of Foreign Literature on Hydraulics</td>
<td>80</td>
<td>Ship Channel Design</td>
</tr>
<tr>
<td>40</td>
<td>Ground Water Management</td>
<td>81</td>
<td>Guidelines for Cloud Seeding to Augment Precipitation</td>
</tr>
<tr>
<td>41</td>
<td>Plastic Design in Steel: A Guide and Commentary</td>
<td>82</td>
<td>Odor Control in Wastewater Treatment Plants</td>
</tr>
<tr>
<td>45</td>
<td>Consulting Engineering: A Guide for the Engagement of Engineering Services</td>
<td>83</td>
<td>Environmental Site Investigation</td>
</tr>
<tr>
<td>46</td>
<td>Pipeline Route Selection for Rural and Cross-Country Pipelines</td>
<td>84</td>
<td>Mechanical Connections in Wood Structures</td>
</tr>
<tr>
<td>47</td>
<td>Selected Abstracts on Structural Applications of Plastics</td>
<td>85</td>
<td>Quality of Ground Water</td>
</tr>
<tr>
<td>49</td>
<td>Urban Planning Guide</td>
<td>86</td>
<td>Operation and Maintenance of Ground Water Facilities</td>
</tr>
<tr>
<td>51</td>
<td>Survey of Current Structural Research</td>
<td>88</td>
<td>Management of Water Treatment Plant Residuals</td>
</tr>
<tr>
<td>52</td>
<td>Guide for the Design of Steel Transmission Towers</td>
<td>89</td>
<td>Pipeline Crossings</td>
</tr>
<tr>
<td>53</td>
<td>Criteria for Maintenance of Multilane Highways</td>
<td>90</td>
<td>Guide to Structural Optimization</td>
</tr>
<tr>
<td>54</td>
<td>Sedimentation Engineering</td>
<td>91</td>
<td>Design of Guyed Electrical Transmission Structures</td>
</tr>
<tr>
<td>55</td>
<td>Guide to Employment Conditions for Civil Engineers</td>
<td>92</td>
<td>Manhole Inspection and Rehabilitation</td>
</tr>
<tr>
<td>57</td>
<td>Management, Operation and Maintenance of Irrigation and Drainage Systems</td>
<td>93</td>
<td>Crane Safety on Construction Sites</td>
</tr>
<tr>
<td>60</td>
<td>Gravity Sanitary Sewer Design and Construction</td>
<td>95</td>
<td>Urban Subsurface Drainage</td>
</tr>
<tr>
<td>62</td>
<td>Existing Sewer Evaluation and Rehabilitation</td>
<td>96</td>
<td>Guide to Improved Earthquake Performance of Electric Power Systems</td>
</tr>
<tr>
<td>63</td>
<td>Structural Plastics Design Manual</td>
<td>98</td>
<td>Conveyance of Residuals from Water and Wastewater Treatment</td>
</tr>
<tr>
<td>64</td>
<td>Manual on Engineering Surveying</td>
<td>99</td>
<td>Environmental Site Characterization and Remediation Design Guidance</td>
</tr>
<tr>
<td>65</td>
<td>Construction Cost Control</td>
<td>100</td>
<td>Groundwater Contamination by Organic Pollutants: Analysis and Remediation</td>
</tr>
<tr>
<td>66</td>
<td>Structural Plastics Selection Manual</td>
<td>101</td>
<td>Underwater Investigations</td>
</tr>
<tr>
<td>67</td>
<td>Wind Tunnel Studies of Buildings and Structures</td>
<td>102</td>
<td>Design Guide for FRP Composite Connections</td>
</tr>
<tr>
<td>68</td>
<td>Aeration: A Wastewater Treatment Process</td>
<td>103</td>
<td>Guide to Hiring and Retaining Great Civil Engineers</td>
</tr>
<tr>
<td>69</td>
<td>Sulfide in Wastewater Collection and Treatment Systems</td>
<td>104</td>
<td>Recommended Practice for Fiber-Reinforced Polymer Products for Overhead Utility Line Structures</td>
</tr>
<tr>
<td>70</td>
<td>Evapotranspiration and Irrigation Water Requirements</td>
<td>105</td>
<td>Animal Waste Containment in Lagoons</td>
</tr>
<tr>
<td>71</td>
<td>Agricultural Salinity Assessment and Management</td>
<td>106</td>
<td>Horizontal Auger Boring Projects</td>
</tr>
<tr>
<td>72</td>
<td>Design of Steel Transmission Pole Structures</td>
<td>107</td>
<td>Ship Channel Design (Second Edition)</td>
</tr>
<tr>
<td>73</td>
<td>Quality in the Constructed Project: A Guide for Owners, Designers, and Constructors</td>
<td>108</td>
<td>Pipeline Design for Installation by Horizontal Directional Drilling</td>
</tr>
<tr>
<td>74</td>
<td>Guidelines for Electrical Transmission Line Structural Loading</td>
<td>109</td>
<td>Biological Nutrient Removal (BNR) Operation in Wastewater Treatment Plants</td>
</tr>
<tr>
<td>76</td>
<td>Design of Municipal Wastewater Treatment Plants</td>
<td>110</td>
<td>Sedimentation Engineering: Processes, Measurements, Modeling, and Practice</td>
</tr>
<tr>
<td>77</td>
<td>Design and Construction of Urban Stormwater Management Systems</td>
<td>111</td>
<td>Reliability-Based Design of Utility Pole Structures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>112</td>
<td>Pipe Bursting Projects</td>
</tr>
</tbody>
</table>
CONTENTS

PREFACE ... vii

ACKNOWLEDGMENTS ... viii

1 GENERAL ... 1

1.1 Introduction ... 1
1.2 History of Pipe Bursting Development 2
1.3 What Is Pipe Bursting? .. 2
1.4 Pipe Bursting Feasibility and Benefits 4
1.5 Applicability ... 7
1.6 Pipe Bursting Systems ... 7
1.7 Trenchless Pipeline Removal Systems 12
1.8 Pipe Material .. 15
1.9 Scope of This Manual ... 16
1.10 Related Documents ... 16
1.11 Definitions ... 17

2 PLANNING PHASE ... 21

2.1 Planning Activities ... 22
2.2 Predesign Surveys ... 25
2.3 Environmental Impacts and Benefits 29
2.4 Social Impacts and Benefits 30
2.5 Permits .. 30
2.6 Jobsite Logistics Requirements 31
2.7 Length of Installation .. 32
2.8 Accuracy and Tolerances, Including Settlement and Heave ... 33
2.9 Insertion and Reception Pits 34
2.10 Service Connections ... 35
2.11 Maintaining Service .. 36
2.12 Cost Considerations ... 37
2.13 General Selection Guidelines 39
PREFACE

This Manual of Practice (MOP) was prepared by the Pipe Bursting Task Force of the ASCE Committee on Trenchless Installation of Pipelines (TIPS), under supervision of the Pipeline Division. This manual describes current pipe bursting practices used by engineers and construction professionals in designing and constructing pipelines under roads, railroads, streets, and other man-made and natural structures and obstacles. The Trenchless Installation of Pipelines (TIPS) Committee under leadership of Dr. Ahmad Habibian, P.E. (Past Chair) and Mr. Timothy Stinson, P.E. (Current Chair) is credited for the efforts leading to this publication. The committee would like to thank contributors, task committee members, and blue ribbon reviewers, whose names follow, for their support, time, and efforts.

Mohammad Najafi
ASCE Pipe Bursting Task Committee Chair
ACKNOWLEDGMENTS

Contributors
Part 1: General
Team Leader: Alan Atalah, Bowling Green State University
Dennis Doherty, Jacobs Associates
Tim Stinson, S E A Consultants, Inc.
Tony Almeida, Halff Associates

Part 2: Planning Phase
Team Leader: Terry McArthur, HDR Engineering, Inc.
Robert Carpenter, Underground Construction (Oildom Publishing)
Brett Affholder, Insituform Technologies
Randy Robertson, Cyntech Corp.
Dave Kozman, RS Lining Systems, LLC
Peter Funkhouser, Michigan Department of Transportation

Part 3: Existing (Host) Pipe
Team Leader: Ralph Carpenter, American Ductile Iron Pipe/American Spiral Weld Pipe
Larry Petroff, Performance Pipe
Tom Marti, Underground Solutions, Inc.
Shah Rahman, S&B Technical Products/Hultec
Larry Slavin, Outside Plant Consulting Services, Inc.

Part 4: New (Replacement) Pipe
Team Leader: Larry Slavin, Outside Plant Consulting Services, Inc.
Ralph Carpenter, American Ductile Iron Pipe/American Spiral Weld Pipe
Larry Petroff, Performance Pipe
Tom Marti, Underground Solutions, Inc.
Shah Rahman, S&B Technical Products/Hultec

Part 5: Design and Preconstruction Phase
Team Leader: Terry Moy, Woolpert, Inc.
Mark Dionise, Michigan Department of Transportation
Part 6: Construction Phase
Team Leaders: Ben Cocogliato, TT Technologies, Inc. and
Eric Nicholson, Hammer Head Mole
Mike Mason, Nowak Construction Company
Al Tenbusch, Tenbusch, Inc.
Oleh Kinash, Center for Underground Infrastructure Research and
Education (CUIRE)
Abdel Tayebi, Center for Underground Infrastructure Research and
Education (CUIRE)
Brian Hunter, TT Technologies, Inc.
Alan Goodman, Hammer Head Mole
Jeff Wage, Hammer Head Mole
Dave Holcomb, TT Technologies, Inc.

Blue Ribbon Reviewers
David Bennett, Bennett/Staheli Engineers
Tennyson M. Muindi, Haley & Aldrich, Inc.
Collins Orton, TT Technologies, Inc.

ASCE Representatives
John Segna, Director, Technical Activities
Verna Jameson, Senior Coordinator, Technical Activities
Suzanne Coladonato, Manager, Book Production

Task Committee Officers
Chair: Mohammad Najafi, Center for Underground Infrastructure
Research and Education (CUIRE)

Vice Chair: Ralph Carpenter, American Ductile Iron Pipe/American
Spiral Weld Pipe

Secretary: Craig Camp, Jacobs Associates

Pipeline Division Executive Committee
Dr. Tom Iseley, P.E., Chair
Joe Castronovo, P.E.
Dr. Ahmad Habibian, P.E.
William J. Moncrief, P.E.
Dr. Mohammad Najafi, P.E.
Michael T. Stift, P.E.
Randy Robertson, P.E.
This page intentionally left blank
1.1 INTRODUCTION

Pipe bursting is a well-established trenchless method that is widely used for the replacement of an existing and deteriorated pipe with a new pipe of the same or larger diameter. Many factors should be reviewed thoroughly before pipe bursting projects are considered and released for bid. Engineers should consider different options and select the most cost-effective and environmentally friendly methods for bid. The method selection should not be left to only the judgment of the contractor. This manual will help engineers and owners in the method selection process.

Pipe bursting is especially cost-effective if the existing pipe is out of capacity. This method can be used advantageously to reduce damage to pavements and disruptions to traffic, hence reducing the social costs associated with pipeline installations. There are, however, limits to the use of the pipe bursting method, and various conditions challenge the successful use of its application. This manual provides information that is essential for the engineer as well as the contractor for the successful and safe execution of pipe bursting projects.

Although the pipe bursting method is commonly used for replacing an existing pipe, it has not been covered adequately by manuals, guidelines, or standards. The need to develop a comprehensive manual for pipe bursting projects arose as a result of steady advancements in the field and the lack of proper engineering guidelines. This manual, developed by the Pipe Bursting Task Force of the ASCE Committee on Trenchless Installation of Pipelines (TIPS), is a major step toward promoting best practices and creating a knowledge base for pipe bursting projects. This manual will assist engineers, contractors, and owners in designing and carrying