

Navigation Engineering Practice and Ethical Standards

ASCE Manuals and Reports on Engineering Practice No. 116

Navigation Engineering Practice and Ethical Standards

A Task Committee of the Waterways and Navigation Engineering Committees of the Coasts, Oceans, Ports, and Rivers Institute of the American Society of Civil Engineers

Edited by William H. McAnally, Ph.D., P.E.

Library of Congress Cataloging-in-Publication Data

Navigation engineering practice and ethical standards / edited by William H. McAnally.

p. cm. — (ASCE manuals and reports on engineering practice ; no. 116)

Includes bibliographical references and index.

ISBN 978-0-7844-0992-3

- Hydraulic engineering—Moral and ethical aspects.
 United
 States. Army. Corps of Engineers.
 Hydraulic engineering—United
 Channels (Hydraulic engineering)
 Hydraulic structures.
- 6. Engineering design—United States. I. McAnally, William H.

TC423.N355 2008

627.0973---c22

2008036680

Published by American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia 20191

www.pubs.asce.org

Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein. No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE. The materials are for general information only and do not represent a standard of ASCE, nor are they intended as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document.

ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefor. This information should not be used without first securing competent advice with respect to its suitability for any general or specific application. Anyone utilizing this information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

ASCE and American Society of Civil Engineers—Registered in U.S. Patent and Trademark Office.

Photocopies and reprints. You can obtain instant permission to photocopy ASCE publications by using ASCE's online permission service (http://pubs.asce.org/permissions/requests/). Requests for 100 copies or more should be submitted to the Reprints Department, Publications Division, ASCE (address above); e-mail: permissions@asce.org. A reprint order form can be found at http://pubs.asce.org/support/reprints/.

Copyright © 2009 by the American Society of Civil Engineers. All Rights Reserved. ISBN 13: 978-0-7844-0992-3 Manufactured in the United States of America.

MANUALS AND REPORTS ON ENGINEERING PRACTICE

(As developed by the ASCE Technical Procedures Committee, July 1930, and revised March 1935, February 1962, and April 1982)

A manual or report in this series consists of an orderly presentation of facts on a particular subject, supplemented by an analysis of limitations and applications of these facts. It contains information useful to the average engineer in his or her everyday work, rather than findings that may be useful only occasionally or rarely. It is not in any sense a "standard," however; nor is it so elementary or so conclusive as to provide a "rule of thumb" for nonengineers.

Furthermore, material in this series, in distinction from a paper (which expresses only one person's observations or opinions), is the work of a committee or group selected to assemble and express information on a specific topic. As often as practicable, the committee is under the direction of one or more of the Technical Divisions and Councils, and the product evolved has been subjected to review by the Executive Committee of the Division or Council. As a step in the process of this review, proposed manuscripts are often brought before the members of the Technical Divisions and Councils for comment, which may serve as the basis for improvement. When published, each work shows the names of the committees by which it was compiled and indicates clearly the several processes through which it has passed in review, in order that its merit may be definitely understood.

In February 1962 (and revised in April 1982) the Board of Direction voted to establish a series entitled "Manuals and Reports on Engineering Practice," to include the Manuals published and authorized to date, future Manuals of Professional Practice, and Reports on Engineering Practice. All such Manual or Report material of the Society would have been refereed in a manner approved by the Board Committee on Publications and would be bound, with applicable discussion, in books similar to past Manuals. Numbering would be consecutive and would be a continuation of present Manual numbers. In some cases of reports of joint committees, bypassing of Journal publications may be authorized.

MANUALS AND REPORTS ON ENGINEERING PRACTICE CURRENTLY AVAILABLE

No. Title

No. Title

Transmission Structures 93 Crane Safety on Construction Sites

40	Ground Water Management	94	Inland Navigation: Locks, Dams, and
45	Consulting Engineering: A Guide for the		Channels
	Engagement of Engineering Services	95	Urban Subsurface Drainage
49	Urban Planning Guide	97	Hydraulic Modeling: Concepts and
50	Planning and Design Guidelines for		Practice
	Small Craft Harbors	98	Conveyance of Residuals from Water
54	Sedimentation Engineering		and Wastewater Treatment
57	Management, Operation and	100	Groundwater Contamination by
	Maintenance of Irrigation and		Organic Pollutants: Analysis and
	Drainage Systems		Remediation
60	Gravity Sanitary Sewer Design and	101	Underwater Investigations
	Construction, Second Edition	103	Guide to Hiring and Retaining Great
62	Existing Sewer Evaluation and		Civil Engineers
	Rehabilitation	104	Recommended Practice for Fiber-
66	Structural Plastics Selection Manual		Reinforced Polymer Products for
67	Wind Tunnel Studies of Buildings and		Overhead Utility Line Structures
	Structures	105	Animal Waste Containment in
68	Aeration: A Wastewater Treatment		Lagoons
	Process	106	Horizontal Auger Boring Projects
71	Agricultural Salinity Assessment and	107	Ship Channel Design (Second Edition)
	Management	108	Pipeline Design for Installation by
73	Quality in the Constructed Project:		Horizontal Directional Drilling
	A Guide for Owners, Designers, and	109	Biological Nutrient Removal (BNR)
	Constructors		Operation in Wastewater Treatment
77	Design and Construction of Urban		Plants
	Stormwater Management Systems	110	Sedimentation Engineering: Processes,
80	Ship Channel Design		Measurements, Modeling, and
81	Guidelines for Cloud Seeding to		Practice
	Augment Precipitation	111	Reliability-Based Design of Utility Pole
82	Odor Control in Wastewater Treatment		Structures
	Plants	112	Pipe Bursting Projects
84	Mechanical Connections in Wood	113	Substation Structure Design Guide
	Structures	114	Performance-Based Design of Structural
85	Quality of Ground Water		Steel for Fire Conditions
91	Design of Guyed Electrical	115	Pipe Ramming Projects
	Transmission Structures	116	Navigation Engineering Practice and
0.2	Consider Confedence Consideration City		Edit1 Co 1 1 -

Ethical Standards

CONTENTS

PRE	FACE	ix
INT	RODUCTION	1
1.1	Background and Purpose	1
1.2	Navigation Projects	2
1.3	Navigation Engineering	3
1.4	Organization of the Manual	4
2	ENGINEERING ETHICS	5
2.1	General	
2.2	Engineering Codes of Ethics	5
2.3	Ethics and Engineering Practice	8
2.4	Other Codes of Ethics	10
3	DESIGN PHILOSOPHY AND GOALS	11
3.1	General	11
3.2	Designing for Safety	12
3.3	Corps of Engineers Design Guidance	12
3.4	ASCE Design Guidance	14
3.5	PIANC Design Guidance	14
3.6	Ethical Considerations	15
4	DESIGN CONDITIONS AND ASSUMPTIONS	17
4.1	Design Conditions	17
4.2	Design Assumptions	19
4.3	Risk Assessment	19
44	Ethical Considerations	20

vi CONTENTS

5	CRITERIA FOR DESIGN OF PROJECT FEATURES	21
5.1	General	21
5.2	Channels	22
5.3	Dams, Including Spillways and Powerhouses	22
5.4	Locks	24
5.5	Small Boat Harbors	26
5.6	Jetties	27
5.6	Ethical Considerations	29
6	DESIGN PROCESS	31
6.1	Design Process	31
6.2	Design of Small Boat Harbors	32
6.3	Design of Ship Channels	32
6.4	Design of Approach Channels	33
6.5	Design of Breakwaters and Closure Dams	34
6.6	Design of Locks	36
6.7	Independent Review	36
6.8	Design Deficiency Evaluation	36
6.9	12 Actions for Change	37
6.10	Ethical Considerations	38
7	SUSTAINABLE DEVELOPMENT	41
7.1	General	41
7.2	Evolution of Design Criteria	42
7.3	Design and Operation Criteria for Sustainability	43
7.4	Example of Ethical Considerations	45
	-	10
8	CORPS OF ENGINEERS MANAGEMENT OF WATERWAYS	49
8.1	Operations	49
8.2	Planning Efforts	50
8.3	Operations and Maintenance	52
8.4		52
8.5	Chronological Standard Operating Procedure for O&M	54
	Development of an Emergency Response Plan	56
8.6 8.7	Coordination Efforts with Users	56 57
-		57 57
8.8	Weekly Safety Meetings and Status Reports	5/
8.9	Ongoing Inspection during Operations, Preventive	EO
8.10	Maintenance, and Repair Work	
O. IU	Allitual ofte Hisperholis	・リフ

CONTENTS	•••
CONTENTS	VII

8.11	Maintaining, Revising, and Updating Maintenance Records	60
8.12	Periodic Inspections	60
8.13	Staff Inspection and Staff Assistance Visits	61
8.14	Development of a Long-Term Maintenance Plan	61
8.15	Development and Revising the Backlog of Maintenance or	
	Capital Improvement Needs	63
8.16	Ethical Considerations	63
9	U.S. COAST GUARD CONTRIBUTIONS	
	TO WATERWAYS	67
9.1	General	67
9.2	Maritime Mobility	68
9.3	Maritime Safety	71
9.4	Maritime Security	75
9.5	National Defense	77
9.6	Protection of Natural Resources	77
9.7	Ethical Considerations	79
10	NOAA CONTRIBUTIONS TO WATERWAYS	81
10.1	General	81
10.2	Nautical Charts	81
10.3	Tides and Currents	82
10.4	Currents	
10.5	Global Positioning	
10.6	Coast Pilot	
10.7	Ports	
10.8	Marine and Coastal Weather Services	
10.9	Ethical Considerations	86
11	TOOLS TO ENSURE SAFE DESIGN AND	
	OPERATION	87
11.1	General	87
11.2	Standard and Accepted Computations	88
11.3	Physical Model Studies	88
11.4	Numerical Model Studies	
11.5	Vessel Simulation Studies	
11.6	Field Evaluation Studies	
11.7	Tiered Analysis	
11.8	Risk Assessment and Uncertainty	
11.9	Ethical Considerations	95

viii CONTENTS

12	CONCLUSIONS	97
REFE	ERENCES	99
APPI	ENDIX: ASCE Code of Ethics	103
INDI	EX	109

PREFACE

This manual was produced by a Task Committee of the Waterways Committee and Navigation Engineering Committee of the Coasts, Oceans, Ports, and Rivers Institute, American Society of Civil Engineers.

Members of the Task Committee and authors of this manual are:

- William H. McAnally, Ph.D., P.E., F.ASCE, Associate Professor of Civil and Environmental Engineering at Mississippi State University, teaches and performs research in navigation engineering. Primary author of Chapter 7 and editor of this volume.
- Bruce L. McCartney, P.E., M.ASCE, U.S. Army Corps of Engineers, retired. Committee Chairman and primary author of Chapters 3, 4, 5, 6, 9, and 10.
- Charles C. Calhoun, Jr., P.E., F.ASCE, Consultant, Retired Deputy Director of the Corps's Coastal and Hydraulics Laboratory, conducts leadership and ethics programs for private and public sector organizations, including ASCE. Primary author of Chapter 2.
- Michael D. Cox, M.COPRI, Chief, Lock and Dam Section, Illinois Waterway Project Office, U.S. Army Corps of Engineers, Rock Island District. Primary author of Chapter 8.
- Thomas J. Pokrefke, MSCE, P.E., M.ASCE, Consultant, Hydraulic Engineer. Primary author of Chapter 11.

The authors express their appreciation to the reviewers of this Manual, who included: Thomas W. Wakeman, Center for Maritime Systems, Stevens Institute of Technology; Nicholas Pansic, MWH Natural Resources, Industry & Infrastructure; Dennis O. Norris, U.S. Army Corps of Engineers; Gregory Johnson, Bergmann Associates; Robert Engler, Moffat & Nichol; Eric Christensen, U.S. Coast Guard; Mark Lindgren, U.S. Army Corps of Engineers; Jim Blanchar, U.S. Army Corps of Engineers; Stephen A. Curtis, Tetra Tech EC, Inc.; Billy Edge, Texas A & M University; Michael F. Garrett, URS Corporation; David P. Devine, University of Notre Dame; Norma

x PREFACE

Jean Mattei, University of New Orleans; and Ryan C. Murphy, Michels Corporation.

We thank the U.S. Army Corps of Engineers, the U.S. Coast Guard, and the National Oceanic and Atmospheric Administration for use of their excellent publications and graphics, which are used extensively in this manual, and Carol A. McAnally for her editorial reviews.

CHAPTER 1 INTRODUCTION

1.1 BACKGROUND AND PURPOSE

1.1.1 Background

By Congressional decree, the U.S. Army Corps of Engineers was given authority and funds to build and maintain inland waterways for navigation, ship channels for ocean-going vessels, and numerous small boat harbors. In the past, ethical considerations for navigation project design criteria were self-contained knowledge within the Corps design community. The design philosophy and design criteria were often verbally passed from senior engineers to junior engineers. The few criteria that existed were scattered throughout several Engineer Manuals and Regulations.

ASCE Manual No. 50, Report on Small Craft Harbors (1969), was the first attempt to consolidate some of the Corps's navigation criteria for small boat harbors. Consolidation of criteria for inland barge navigation systems and deep-draft ship channels was undertaken by the Corps in the 1970s. This effort resulted in the publication of Layout and Design of Shallow Draft Waterways, EM 1110-2-1611 (1980), and Hydraulic Design of Deep Draft Navigation Projects, EM 1110-2-1613 (1983).

Until recently, the Corps was the exclusive designer and maintainer of navigation channels in the United States. However, with the current move to contract out design and privatize many government missions, there has emerged a private sector audience that can benefit from past experience and lessons learned.

Unfortunately, in the 1980s and 1990s there was a government-wide initiative to reduce federal regulations. The Corps manuals were vulnerable to this purge. The ASCE Waterways Committee was aware of the potential loss of this valuable design information and undertook a preservation mission.

This Ethics Manual, along with ASCE Manuals No. 94, Inland Navigation: Locks, Dams, and Channels (McCartney et al. 1995), and No. 107, Ship Channel Design and Operation (McCartney et al. 2005), presents not only Corps navigation design practice and experience, but also foreign country practice and activities of other U.S. agencies with navigation missions.

This Manual is intended to be a reference to explain the ethical roots of navigation engineering criteria. The target audience includes beginning engineers in the Corps, private sector engineers in the United States and overseas, other U.S. government agencies involved with navigation, and university students pursuing navigation-related studies.

1.1.2 Purpose

The purpose of this Manual is to present engineering criteria and practices for design, operation, and management of navigation projects, and demonstrate how those criteria and practices are interwoven with engineering ethics.

The levee failures during Hurricane Katrina (2005) raised many questions, including engineering criteria suitability, level of protection decisions, and risk assessment. Although levees are generally considered an element of a flood control project, the same questions arise in navigation projects. These Katrina-related questions point out the need to explain the origin of design, the design process to consider criteria and risk, and project operation needed to achieve the design goals. They also clearly point to a need for ethical decision-making at every level. During the design process, pressures to reduce cost can threaten safety, efficiency, and reliability. This Manual supports adherence to sound criteria by showing how engineering ethics is interwoven into navigation project design and operation to achieve the objective of public safety. This Manual differs somewhat from the usual "how-to-do-it" format by including a "why-we-do-it" aspect, which includes an historic perspective on criteria development.

1.2 NAVIGATION PROJECTS

Navigation projects provide for waterborne transport of people and goods—by ships, barges, ferries, and other vessels. They consist of ports, harbors, channels, locks, and related facilities, and they constitute vital links in the U.S. Marine Transportation System—a collection of people, facilities, organizations, and equipment that work together to move people and goods from origin to destination using waterborne carriers for at least one component of the journey.

Navigation projects include channels for ships, barges, and other watercraft. For the purposes of this Manual, they also include the water