Pipeline Design for Installation by Horizontal Drilling

Second Edition

Horizontal Directional Drilling Design Guideline Task Committee

Edited by Eric R. Skonberg, P.E.
Tennyson M. Muindi, P.E.
Pipeline Design for Installation by Horizontal Directional Drilling

Second Edition

Prepared by
the Horizontal Directional Drilling Design Guideline Task Committee
of the Technical Committee on Trenchless Installation of Pipelines of
the Pipeline Division of the American Society of Civil Engineers

Edited by
Eric R. Skonberg, P.E.
Tennyson M. Muindi, P.E.

Published by the American Society of Civil Engineers
A manual or report in this series consists of an orderly presentation of facts on a particular subject, supplemented by an analysis of limitations and applications of these facts. It contains information useful to the average engineer in his or her everyday work, rather than findings that may be useful only occasionally or rarely. It is not in any sense a “standard,” however; nor is it so elementary or so conclusive as to provide a “rule of thumb” for nonengineers.

Furthermore, material in this series, in distinction from a paper (which expresses only one person’s observations or opinions), is the work of a committee or group selected to assemble and express information on a specific topic. As often as practicable the committee is under the direction of one or more of the technical divisions and councils, and the product evolved has been subjected to review by the executive committee of the division or council. As a step in the process of this review, proposed manuscripts are often brought before the members of the technical divisions and councils for comment, which may serve as the basis for improvement. When published, each work shows the names of the committees by which it was compiled and indicates clearly the several processes through which it has passed in review, so that its merit may be definitely understood.

In February 1962 (and revised in April 1982), the Board of Direction voted to establish a series titled “Manuals and Reports on Engineering Practice,” to include the Manuals published and authorized to date, future Manuals of Professional Practice, and Reports on Engineering Practice. All such Manual or Report material of the Society would have been refereed in a manner approved by the Board Committee on Publications and would be bound, with applicable discussion, in books similar to past Manuals. Numbering would be consecutive and would be a continuation of present Manual numbers. In some cases of joint committee reports, bypassing of Journal publications may be authorized.

A list of available Manuals of Practice can be found at http://www.asce.org/bookstore.
CONTENTS

CONTRIBUTORS ... vii

1. INTRODUCTION .. 1
 1.1 Scope ... 1

2. PREDESIGN SURVEYS .. 3
 2.1 Introduction ... 3
 2.2 Surface Survey ... 3
 2.3 Subsurface Investigation ... 4
 References .. 12

3. DRILLED PATH DESIGN .. 13
 3.1 Introduction ... 13
 3.2 Penetration Angles ... 14
 3.3 Depth of Penetration .. 14
 3.4 Radius of Curvature .. 16
 3.5 Directional Accuracy and Tolerances 16
 3.6 Drill-and-Intersect Method .. 17
 3.7 Multiple-Line Installations ... 17
 3.8 Casings ... 18
 References .. 18

4. PIPE DESIGN ... 21
 4.1 Introduction ... 21
 4.2 Installation Loads ... 21
 4.3 Operating Loads .. 25
 4.4 Pipe Material .. 27
 4.5 Stresses in Steel Pipe .. 29
 4.6 Stresses in High-Density Polyethylene Pipe 35
 4.7 Ductile Iron Pipe Design Considerations 40
 4.8 Steel Pipe Corrosion Coating 41
 References .. 42
5. CONSTRUCTION IMPACT ... 45
 5.1 Introduction ... 45
 5.2 Workspace .. 45
 5.3 Drilling Fluid ... 46
References.. 53

6. AS-BUILT DOCUMENTATION .. 55
 6.1 Introduction ... 55
 6.2 Construction Staking... 55
 6.3 Documentation of Actual Drilled Path End Points.............. 55
 6.4 Required Measurements Prior to Commencing Drilling Operations .. 56
 6.5 Pilot-Hole As-Built Calculations .. 56
 6.6 Pilot-Hole Survey Data .. 56
 6.7 Pilot-Hole As-Built Error Distribution 60
 6.8 Pilot-Hole As-Built Drawing ... 60
 6.9 Postinstallation Survey .. 60
References.. 61

GLOSSARY ... 63
INDEX .. 69
CONTRIBUTORS

TASK COMMITTEE

Eric R. Skonberg, P.E., Chairman
President
Trenchless Engineering Corporation
15015 Inverrary Drive
Houston, TX 77095
skonberg@trenchlessengineering.com

Brad K. Baker, P.E.
Project Manager Engineer
Magellan Midstream Partners, L.P.
One Williams Center, MD:30
Tulsa, OK 74172
Brad.Baker@magellanlp.com

Ralph Carpenter
Marketing Specialist
American Ductile Iron Pipe
American Spiralweld Pipe
1501 31st Avenue North
Birmingham, AL 35207
rcarpenter@acipco.com

Larry J. Petroff, P.E.
Consultant
lpetroff@charter.net

Glenn Duyvestyn, Ph.D., P.E., P.Eng
Senior Associate | Principal Project Manager
Hatch Mott MacDonald
Canal Place
520 South Main Street, Suite 2457
Akron, OH 44311
glenn.duyvestyn@hatchmott.com

Camille George Rubeiz, P.E.
Director of Engineering
Plastics Pipe Institute
105 Decker Court, Suite 825
Irving, TX 75062
crubeiz@plasticspipe.org

Tim McGuire
Vice President of Directional Crossings
Michels Directional Crossings
A Division of MICHELS Corporation
P.O. Box 128 | 817 West Main Street
Brownsville, WI 53006
TMcguire@michels.us
Arvid Veidmark III
Executive Vice President/Senior Estimator
Specialized Services Co. (SSC)
2001 W. North Lane, Suite A
Phoenix, AZ 85021
arvid@ssc-boring.com

Mark Woodward, P.E.
U.S. Army Corps of Engineers
CEMVN-ED New Orleans District
P.O. Box 60267
New Orleans, LA 70016-0267
Mark.L.Woodward@usace.army.mil

BLUE RIBBON PANEL REVIEWERS

John D. Hair, P.E.
President
J.D. Hair & Associates, Inc.
2121 South Columbia Avenue, Suite 101
Tulsa, OK 74114-3502
jhair@jdhair.com

Samuel T. Ariaratnam, Ph.D., P.E., P.Eng
Construction Engineering Program Chair
Arizona State University
Del E. Webb School of Construction
P.O. Box 870204, Rm 144 Urban Systems Engineering Building
Tempe, AZ 85287-0204
Samuel.Ariaratnam@asu.edu

Ron Halderman, P.E.
Director & Senior Engineer, HDD Division
Mears Group, Inc.
920 Memorial City Way
Suite 650
Houston, TX 77024
Ron.Halderman@Mears.net

TECHNICAL COMMITTEE ON TRENCHLESS INSTALLATION OF PIPELINE SYSTEMS

Tennyson M. Muindi, P.E., Chair
Lead Associate
Jacobs Associates
67 South Bedford Street, Suite 301E
Burlington, MA 01803
muindi@jacobssf.com

Terry Moy, P.E., ExCom Liaison
Manager, Program Management and Engineering
Clayton County Water Authority
1600 Battle Creek Road
Morrow, GA 30260
tmoy@ccwa.us
CHAPTER 1
INTRODUCTION

1.1 SCOPE

This manual of practice addresses the design of major pipeline or duct segments to be installed by horizontal directional drilling (HDD). Generally speaking, major pipeline segments are greater than 500 ft in length and greater than 4 in. in diameter. They are installed by medium to large HDD drilling rigs (midi- to maxi-HDD drilling rigs). The design practices described in this manual are not generally applicable to small trenchless segments of pipe, duct, or cable installed by “mini-HDD” drilling rigs.

Horizontal directional drilling is a trenchless excavation method that is accomplished in three phases. The first phase consists of drilling a small-diameter pilot hole along a designed directional path. The second phase consists of enlarging the pilot hole to a diameter suitable for installation of the pipe. The third phase consists of pulling the pipe into the enlarged hole. Horizontal directional drilling is accomplished using a specialized horizontal drilling rig with ancillary tools and equipment.

This manual has been prepared to serve as a guide for design engineers and presumes that the user has knowledge of the HDD installation process and pipeline design methods. Topics covered are limited to those related to HDD installation. Other sources of information and design methods should be consulted for guidance on designing the pipeline to satisfy service requirements. This manual is not a general design handbook for pipelines, and it is not meant to replace sound engineering judgment. Users of this manual should recognize that HDD installations are complicated civil engineering works and that only experienced professional engineers should undertake their design.