SUSTAINABILITY AND ENERGY MANAGEMENT

FOR WATER RESOURCE RECOVERY FACILITIES

SUSTAINABILITY AND ENERGY MANAGEMENT FOR WATER RESOURCE RECOVERY FACILITIES

WEF Manual of Practice No. 38
ASCE Manuals and Reports on Engineering
Practice No. 137

2018

Water Environment Federation 601 Wythe Street Alexandria, VA 22314-1994 USA http://www.wef.org American Society of Civil Engineers/ Environmental and Water Resources Institute 1801 Alexander Bell Drive Reston, VA 20191-4400 http://www.asce.org Copyright © 2018 by the Water Environment Federation and the American Society of Civil Engineers/ Environmental and Water Resources Institute. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of WEF and ASCE/EWRI. Permission to copy must be obtained from both WEF and ASCE/EWRI.

ISBN: 978-1-57278-341-6

Water Environment Research, WEF, and WEFTEC are registered trademarks of the Water Environment Federation. American Society of Civil Engineers, ASCE, Environmental and Water Resources Institute, and EWRI are registered trademarks of the American Society of Civil Engineers.

IMPORTANT NOTICE

The material presented in this publication has been prepared in accordance with generally recognized engineering principles and practices and is for general information only. This information should not be used without first securing competent advice with respect to its suitability for any general or specific application.

The contents of this publication are not intended to be a standard of the Water Environment Federation (WEF) or the American Society of Civil Engineers (ASCE)/Environmental and Water Resources Institute (EWRI) and are not intended for use as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document.

No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by WEF or ASCE/EWRI.

WEF and ASCE/EWRI make no representation or warranty of any kind, whether expressed or implied, concerning the accuracy, product, or process discussed in this publication and assumes no liability.

Anyone using this information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

About WEF

The Water Environment Federation (WEF) is a not-for-profit technical and educational organization of 33,000 individual members and 75 affiliated Member Associations representing water quality professionals around the world. Since 1928, WEF and its members have protected public health and the environment. As a global water sector leader, our mission is to connect water professionals; enrich the expertise of water professionals; increase the awareness of the impact and value of water; and provide a platform for water sector innovation. To learn more, visit www.wef.org.

About ASCE/EWRI

Founded in 1852, the American Society of Civil Engineers (ASCE) represents more than 150,000 members of the civil engineering profession worldwide and is America's oldest national engineering society. Created in 1999, the Environmental and Water Resources Institute (EWRI) is an Institute of ASCE. EWRI services are designed to complement ASCE's traditional civil engineering base and to attract new categories of members (non-civil engineer allied professionals) who seek to enhance their professional and technical development.

For information on membership, publications, and conferences, contact

ASCE/EWRI 1801 Alexander Bell Drive Reston, VA 20191-4382 (703) 295-6000 http://www.asce.org Prepared by Design of Water Resource Recovery Facilities Task Force of the Water Environment Federation and the American Society of Civil Engineers/Environmental and Water Resources Institute

Terry L. Krause, P.E., BCEE, WEF Fellow, *Chair*

Jeanette Brown, P.E., DEE, D. WRE; Mark E. Lang, P.E., BCEE; and Kendra D. Sveum, P.E., Volume Leaders

Jennifer L. Strehler, P.E., MBA, BCEE, ENV-SP; Rebecca Gauff; Elizabeth Miner; Jason Turgeon; and David Valero, *Authors*

Malarmagal Ahilan Rafid Alkhaddar (ASCE Blue Ribbon Review Panel) Naomi Eva Anderson Rich Atoulikian Eric Auerbach Jeovanni Ayala-Lugo, P.E. Amber Batson, P.E. Paul Bizier, P.E., F.ASCE, D.WRE Lucas Botero, P.E., BCEE, ENV SP Akram Botrous, Ph.D., P.E., BCEE Lisa Boudeman Keith Bourgeous, Ph.D, P.E. Gregory A. Bowden John R. Bratby, Ph.D., P.E. Kari Fitzmorris Brisolara, ScD, MSPH, QEP John P. Brito, P.E. Lewis Bryant, P.E. Marie S. Burbano, Ph.D., P.E.,

BCEE

Misti Burkman Chris Bye Jennifer Callahan Onder Caliskaner, Ph.D., P.E. Leonard W. Casson, Ph.D., P.E., BCEE Stan Chilson S. Rao Chitikela, Ph.D., P.E., P.Eng, BCEE (ASCE Blue Ribbon Review Panel) Timothy A. Constantine Bruce L. Cooley, P.E. Emma Cooney Chris D. Cox, Ph.D., P.E. (ASCE Blue Ribbon Review Panel) Glen T. Daigger, Ph.D., P.E., BCEE, NAE (ASCE Blue Ribbon Review Panel) Chris DeBarbadillo, P.E. Adam Dellinger Timur Deniz, Ph.D., P.E., BCEE Carlos Diaz Bruce DiFrancisco, P.E. Ludwig Dinkloh Alexandra Doody, P.E. Leon Downing Bertrand Dussert Na-Asia Ellis Adam Evans, P.E. Richard Finger William Flores Kristin Frederickson Daniel Freedman, P.E. Val S. Frenkel, Ph.D., P.E., D. WRE John Friel, P.E. Edward W. Fritz

Rebecca Gauff

_	
Hany Gerges, Ph.D., P.E., P. Eng	Lee A. Lundberg, P.E.
Matthew Goss, P.E., CEM,	Jose Christiano Machado Jr.,
CEA, CDSM, LEED® AP	Ph.D., P.E.
(BD+C)	Laura Marcolini, P.E.
Linda Gowman	Samir Mathur, P.E., BCEE
Samantha Graybill, P.E.	William C. McConnell
Bently Green, P.E.	Lauren McDaniel, MPH
William Dana Green, P.E.	Charles M. McGinley, P.E.
Jim Groman	Michael A. McGinley, P.E.
Rashi Gupta, P.E.	Anna Mehrotra, Ph.D., P.E.
Drew Hansen	Henryk Melcer
Vaughan Harshman, P.E.	Baoxia Mi (ASCE Blue Ribbon
Jeff Hauser	Review Panel)
Michael Hines, P.E.	Mark W. Miller, Ph.D.
Angela Hintz, P.E.	Elizabeth Miner
Anthonie Hogendoorn, MSc.	Richard O. Mines, Jr., Ph.D.,
Greg Homoki, P.E.	P.E. (ASCE Blue Ribbon
William Hotz	Review Panel)
Brian Huang	Indra N. Mitra, Ph.D., P.E.,
Christopher Hunniford, P.E.	MBA, BCEE
Gary L. Hunter, P.E., BCEE,	Manny Moncholi
ENV SP	Ray P. Montoya, P.E.
Jinsheng (Jin) Huo, Ph.D. P.E.,	Steve Mustard, P.E., CAP,
BCEE (Chair, ASCE Blue	GICSP
Ribbon Review Panel)	Garrison W. Myer
Joseph A. Husband	Vincent Nazareth
Samuel S. Jeyanayagam, Ph.D.,	Maureen D. Neville, P.E.
P.E., BCEE	Robert A. (Randy) Nixon
Jose Jimenez	Ing. Daniel Nolasco
Andrew Jones	Helena Ochoa
Jim Joyce	David W. Oerke, P.E.
John C. Kabouris, Ph.D., P.E.	Andres F. Onate Calderon
Dimitri Katehis	Tim Page-Bottorff, CSP, CET
Morgan Knighton	Ana J. Pena-Tijerina, Ph.D., P.E.
Kyle Kubista, P.E.	Heather M. Phillips, P.E.
Satej Kulkarni	Ashley Pifer, Ph.D., P.E.
Louis Lefebvre	Marcel Pomerleau
Wayne Lem	Ray Porter
Kevin S. Leung, Ph.D., P.E.,	Coenraad Pretorius, P.E.
BCEE	Pusker Regmi, Ph.D., P.E.
F. Michael Lewis	Leiv Rieger
Peter Loomis, P.E.	Joel C. Rife, P.E.
Dusti F. Lowndes	Adam Rogensues, P.E.

A. Robert Rubin, Ph.D. Matt Tebow, P.E. Andrew Salveson, P.E. Rachelle Tippetts Domenico Santoro David Tomowich Patricia A. Scanlan K. Richard Tsang, Ph.D., P.E., Kimberly Schlauch **BCEE** Harold E. Schmidt, Jr., P.E., Jason Turgeon **BCEE** Andrea Turriciano White, P.E. David Ubert Kenneth Schnaars, P.E. Megan Yoo Schneider David Valero Sandra Schuler Don Vandertulip, P.E., BCEE Matt Seib, Ph.D. Ales Volcansek, P.E. Douglas Sherman, P.E. Tanush Wadhawan, Ph.D. Toshio Shimada, Ph.D., P.E. Trevor Wagenmaker, P.E. Kristen Waksman Jim E. Smith, Jr, D.Sc, MASCE, **BCEEM** Steve Waters, P.E., P. Eng Eric Spargimino, P.E., LEED AP David G. Weissbrodt, Asst. Eric T. Staunton, Ph.D. Prof., Ph.D., M.Sc., Jennifer L. Strehler, P.E., MBA, Dipl.-Ing. BCEE, ENV-SP Jianfeng Wen Timothy H. Sullivan, P.E. Curt Wendt, P.E., CAP Alex Szerwinski, P.E. Claes Westring Steven Swanback Jason J. Williams, P.E. Jay L. Swift, P.E. Matthew J. Williams, P.E. Alex Tabb Hannah T. Wilner, P.E., PMP Berrin Tansel, Ph.D., P.E., Melissa K. Woo, P.E. Paul Wood BCEE, FASCE, FEWRI (ASCE Blue Ribbon Wade Wood, P.E. Review Panel) Thomas Worley-Morse, Ph.D. Anthony Tartaglione, P.E., Usama Zaher, Ph.D., P.E. **BCEE** Tian C. Zhang, Ph.D., P.E., BCEE, F.ASCE (ASCE Blue George Tchobanoglous (ASCE Blue Ribbon Review Panel) Ribbon Review Panel)

Under the Direction of the Municipal Subcommittee of the Technical Practice Committee

2018

Water Environment Federation 601 Wythe Street Alexandria, VA 22314-1994 USA http://www.wef.org

Contents

List	of Tab	les				ix	
List	of Figu	ires				ix	
1.0	INTI	RODUC	TION			1	
2.0	SUST	ΓAINAB	ILITY FF	RAMEWOI	RKS	3	
	2.1		nvironme Utilities l		tion Agency Climate Ready	5	
	2.2	Envisi	sion				
	2.3	Leade	rship in E	energy and	Environmental Design	6	
	2.4		_		ng and Materials	8	
	2.5		mized Fra gement Sy		or Environmental and Energy	9	
		2.5.1	ISO 140	001: Enviro	onmental Management Systems	9	
		2.5.2	ISO 500	001: Energ	y Management Systems	11	
	2.6	Projec	ts Seeking	g Awards U	nder Multiple Frameworks	11	
3.0	PRACTICAL APPLICATION				12		
	3.1	Planni	Planning Phase			12	
		3.1.1	Goal Se	tting		12	
			3.1.1.1	Goal Sett	ing Tools	13	
				3.1.1.1.1	Policy Directives	13	
				3.1.1.1.2	Benchmarking and Gap Analysis	13	
				3.1.1.1.3	Energy Audits	15	
				3.1.1.1.4	Eco-Charrettes	20	
			3.1.1.2	Sample Se	et of Sustainability-Oriented		
				Goals and	d Objectives	21	
		3.1.2	Siting D	ecisions (22	
		3.1.3	Commu	nity Integra	ation	22	
		3.1.4	Opport	unity Comp	ponents	23	
	3.2	Preliminary Design Phase			24		

		3.2.1	integrat	ea Design for Sustainability	24
		3.2.2	Technol	ogy Selections	25
			3.2.2.1	Energy Conserving Technologies	25
			3.2.2.2	Energy Producing Technologies	29
			3.2.2.3	Key Factors in Selecting Technologies and Preferred Alternatives	30
	3.3	Final 1	Design Ph	ase	31
		3.3.1	Energy .	Modeling	32
		3.3.2	Greenho	ouse Gas Modeling	33
		3.3.3	Life Cyc	ele Costing	38
		3.3.4	Equipm	ent Selection	38
			3.3.4.1	Energy Management Information	
				Systems	38
			3.3.4.2	Pumping	39
			3.3.4.3	Aeration	40
			3.3.4.4	Solids Handling	40
			3.3.4.5	Ultraviolet Disinfection	41
		3.3.5	Materia	ls Selection	42
			3.3.5.1	Durability and Reliability	42
			3.3.5.2	Content and Production	42
			3.3.5.3	Sustainable Sourcing	44
			3.3.5.4	End of Life Considerations	44
		3.3.6	Future I	Proofing	45
			3.3.6.1	Regulatory Change	45
			3.3.6.2	Resilience to Climate Change	45
			3.3.6.3	Technology Migration Pathways	45
		3.3.7	Other S	ustainability Considerations During	
			Final De	esign	46
	3.4	Biddir	ng Phase		47
		3.4.1		ng Energy and Sustainability Projects	48
		3.4.2		izing Sustainability and Energy ment for Competitive Bid Procurement	50
	3.5	Const	Construction Phase		
	3.6	Opera	tions and	Maintenance Phase	52
4.0	REF	ERENC			53
5.0	SUG	GESTEI	D READI	NGS	56

List of Tables

1	Summary of sustainability frameworks	4
2	Summary of relevant ASTM standards	8
3	On-site energy production unit estimates	6
4	GHG modeling protocols by treatment process	7

List of Figures

1	Environmental management system cycle of continuous				
	improvement				
2	Alternatives development, evaluation, and selection process12				
3	Benchmarking by facility type and flow				
4	Sankey diagram 134				
5	Sankey diagram 2				

Authors' and reviewers' efforts were supported by the following organizations:

AECOM, Piscataway, New Jersey; Buffalo, New York

American Water, Voorhees, New Jersey

Arcadis U.S., Inc., Highlands Ranch, Colorado; Buffalo, New York; White Plains, New York

Arvos Schmidtsche Schack LLC, Wexford, Pennsylvania

Automation Federation, Raleigh, North Carolina

Barge, Waggoner, Sumner and Cannon, Nashville, Tennessee

Bedrock Enterprises, Inc., Baden, Pennsylvania

Black & Veatch, Coral Springs, Florida; Indianapolis, Indiana; Overland Park, Kansas; Kansas City, Missouri; St. Louis, Missouri; Memphis, Tennessee

Brown and Caldwell, Maitland, Florida; Orlando, Florida; Charlotte, North Carolina; Nashville, Tennessee; Alexandria, Virginia; Seattle, Washington

Carollo Engineers, Costa Mesa, California; Walnut Creek, California; Littleton, Colorado; Tampa, Florida; Dallas, Texas

CDM Smith, Carlsbad, California; Irvine, California; Los Angeles, California; Denver, Colorado; Bogota, Columbia; Maitland, Florida; Miami, Florida; Orlando, Florida; Boston, Massachusetts; Manchester, New Hampshire; Albany, New York; Raleigh, North Carolina; Providence, Rhode Island; Houston, Texas; Austin, Texas; Dallas, Texas; Fairfax, Virginia; Leesburg, Virginia; Bellevue, Washington

CH2M, Tampa, Florida; Chicago, Illinois; Albuquerque, New Mexico; Herndon, Virginia; Toronto, Ontario, Canada

Corrosion Probe, Inc., Centerbrook, Connecticut

DC Water, Washington, D.C.

Donohue & Associates, Inc, Chicago, Illinois

Dynamita, Toronto, Canada

Dynamita S.A.R.L., Nyons, France

EnviroSim Associates Ltd., Hamilton, Ontario, Canada

Evoqua Water Technologies LLC, Bradenton, Florida

Garver, Dallas, Texas; Frisco, Texas

Gray and Osborne, Seattle, Washington

GREELEY and HANSEN, Chicago, Illinois, San Francisco, California Hazen and Sawyer, Raleigh, North Carolina

HDR Engineering, Inc., Walnut Creek, California; Calverton, Maryland; Cleveland, Ohio; Nashville, Tennessee Hubbell, Roth & Clark, Inc., Detroit, Michigan

inCTRL Solutions Inc., Oakville, Ontario, Canada

Intera, Richland, Washington

Johnson County Wastewater, Olathe, Kansas

Kennedy/Jenks Consultants, San Francisco, California

Kimley-Horn and Associates, Inc., Mesa, Arizona; Ocala, Florida;

Tampa, Florida; West Palm Beach, Florida; Ft. Worth, Texas

Laura Marcolini & Associates, Inc., Cumberland, Rhode Island

Louisiana State University, Baton Rouge, Louisiana

Madison Metropolitan Sewerage District, Madison, Wisconsin

Manhattan College, Bronx, New York

Material Matters, Elizabethtown, Pennsylvania

National Automation, Inc., Spring, Texas

NOLASCO y Asociados. S. A., Buenos Aires, Argentina

North Carolina State University, Raleigh, North Carolina

SafeStart, Belleville, Ontario, Canada

Short Elliott Hendrickson Inc., St. Paul, Minnesota

Smith and Loveless, Inc., Lenexa, Kansas

Southeast Environmental Engineering, LLC, Knoxville, Tennessee

St. Croix Sensory, Inc., Stillwater, Minnesota

Stantec Consulting Services, Rocklin, California; Denver, Colorado; Tampa, Florida; Portland Oregon

Tesco Controls, Inc., Sacramento, California

Total Safety Compliance, Mesa, Arizona

University of Pittsburgh, Pittsburgh, Pennsylvania

URS Corporation, Buffalo, New York

U.S. Environmental Protection Agency, Boston, Massachusetts

V&A Consulting Engineers, Houston, Texas

Vandertulip WateReusEngineers, San Antonio, Texas

Varec Biogas, Stafford, Texas

Veolia North America, Chicago, Illinois

Washington State Department of Ecology, Bellevue, Washington

WesTech Engineering, Salt Lake City, Utah

Xylem Inc., White Plains, New York

Sustainability and Energy Management for Water Resource Recovery Facilities

Jennifer L. Strehler, P.E., MBA, BCEE, ENV-SP; Rebecca Gauff; Elizabeth Miner; Jason Turgeon; and David Valero

1.0 INTRODUCTION

Energy savings and sustainable design deserve special attention to be sure water resource recovery facilities (WRRFs) have long-term adaptability and resilience to global climate change, volatile energy prices, and other predictable change scenarios. Municipal WRRFs in the United States use approximately 30.2 bil. kWh/yr, or approximately 0.8% of total electricity use in the United States (EPRI, 2013). Yet, of the approximately 14,780 WRRFs in the United States, only approximately 1268 (8.4%) include anaerobic digestion (which offers the potential to recovery chemical energy) and beneficially use this energy on site for production of power and/or heat (WEF, 2013).

The umbrella of *sustainability* covers long-term provisions for resilient facilities to manage a wider range of stressors, and treatment process adaptability to accommodate changing regulations. Sustainability in this context refers to the ability to continue operating without causing immediate or long-term harm to the environment, society, or depleting natural resources. In the accounting sense, this means planning for the future by making annual financial investments that seek to minimize the total life cycle cost of a WRRF across its full life and avoid deferring costs and negative effects to future generations. The concept of sustainability has also expanded to include indirect effects to the greater community, and consider local industry partnerships and social justice issues. Optimizing the sustainability of a WRRF requires