Performance Test Code on Overall Plant Performance
CONTENTS

Foreword .. iii
Standards Committee Roster .. v

Section
0 Introduction.. 1
1 Object and Scope ... 3
2 Definitions and Description of Terms 5
3 Guiding Principles... 7
4 Instruments and Methods of Measurement 23
5 Calculations and Results 47
6 Report of Results .. 65

Figures
3.1 Generic Test Boundary 8
3.2 Typical Steam Plant Test Boundary 8
3.3 Typical Combined Cycle Plant Test Boundary 9
3.4 Three Post-Test Cases 20
4.1 Five-Way Manifold ... 28
4.2 Four-Wire RTDs .. 30
4.3 Three-Wire RTDs ... 30
4.4 Flow-Through Well ... 32
4.5 Duct Measurement Points 33
4.6 Three-Wire Open Delta Connected Metering System 40
4.7 Four-Wire Metering System 41
4.8 Typical Correction Curve 44
5.1 Typical Test Boundary for a Power Plant Requiring Application of Heat Sink Correction factor ΔS_A or ωS_A 54
5.2 Typical Test Boundary for a Power Plant Requiring Application of Heat Sink Correction Factor ΔS_B or ωS_B 55
5.3 Typical Test Boundary for a Power Plant or Thermal Island Requiring Application of Heat Sink Correction Factor ΔS_C or ωS_C 56
5.4 Output Versus Throttle Steam Flow 62
5.5 Steam Turbine Plant Test Boundary 63

Tables
1.1 Largest Expected Test Uncertainties 4
3.1 Design, Construction, and Start-up Considerations 12
3.2 Guidance for Establishing Permissible Deviations From Design 17
3.3 Typical Pretest Stabilization Periods 19
3.4 Recommended Minimum Test Run Durations 19
5.1 Summary of Additive Correction Factors in Fundamental Performance Equations

5.2 Summary of Multiplicative Correction Factors in Fundamental Performance Equations

5.3 Examples of Typical Cycles and Test Objectives — Corresponding Specific Performance Equations

5.4 Change in Compressor Inlet Temperature over a 30% Range in Evaporator Cooler Effectiveness on a 80°F Day, with 80% Relative Humidity

5.5 Required Test Series for Phased Construction Combined Cycle Plants

Nonmandatory Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
</table>
| A | Sample Calculations
Combined Cycle Cogeneration Plant Without Duct Firing
Heat Sink: Completely Internal to Test the Boundary
Test Goal: Specified Measurement Power — Fire to Desired Power Level by Duct Firing. | 67 |
| B | Sample Calculations
Combined Cycle Cogeneration Plant With Duct Firing
Heat Sink: External to the Test Boundary
Test Goal: Specified Measurement Power — Fire to Desired Power Level by Duct Firing. | 81 |
| C | Sample Calculations
Combined Cycle Cogeneration Plant Without Duct Firing
Heat Sink: Cooling Tower External to the Test Boundary
Test Goal: Specified Disposition is Gas Turbine Base Loaded (Power Floats) | 101 |
| D | Representation of Correction for Different Heat Sink Temperature than Gas Turbine Air Inlet Temperature (ΔT or ωT) if Necessary, for a Typical Combined Cycle Plant | 121 |
| E | Sample Calculations
Steam Power Cogeneration Plant
Heat Sink: River Cooling Water Flow within Test Boundary
Test Goal: Two Test Runs are Made with Different Goals
Test Run 1: Specified Corrected Power — Fire to Desired Corrected Power
Test Run 2: Specified Disposition by Firing to Desired Throttle Flow (Power Floats) | 125 |
| F | Uncertainty Analysis | 177 |
| G | Entering Air Conditions | 181 |
| H | Energy Balance Method | 183 |
| I | Solid Fuel and Ash Sampling | 185 |