Performance Requirements for

Temperature Actuated Mixing Valves for Hot Water Distribution Systems

An American National Standard
General Information

Neither this standard, nor any portion thereof, may be reproduced without the written consent of the American Society of Sanitary Engineering.

No product may be said to be ASSE approved unless the manufacturer has applied to ASSE, has had the product tested according to the applicable ASSE Standards, and when the product has passed the test, displays the ASSE Seal on the product.

Instructions for receiving the authorization to display the Seal are available from ASSE’s International Office. Organizations wishing to adopt or list any ASSE Standard should print the ASSE Standard number on the cover page first and in equal or larger type to that of the adopting or listing organization.
The foreword shall not be considered a part of this standard; however it is offered to provide background information.

In the interest of consumer safety, this standard was originally issued in April, 1976; accepted by the American National Standards Institute (ANSI) in 1979 and revised in April 1986, 1998, 2003 and 2009.

Water mixing (also defined as tempering or blending) valves are used extensively in water service applications to mix hot and cold water to reduce high service water temperature to the building distribution piping system.

This class of valve is intended to be installed at the hot water source. These devices are designed for primary automatic control of the hot water distribution temperature within a reasonable degree of uniformity.

To provide final temperature control, ASSE 1017 devices should be supplemented by a point-of-use device or in-line device designed to control final temperature. High temperature limit alarms and/or temperature limiting devices may also be used to monitor or further control point of use water temperature.

Recognition is made of the time volunteered by members of this working group and of the support of the manufacturers who also participated in the meetings for this standard.

This standard does not imply ASSE’s endorsement of a product which conforms to these requirements.

Compliance with this standard does not imply acceptance by any code body.

This standard was promulgated in accordance with procedures developed by the American National Standards Institute (ANSI).
2008-2009 Product Standards Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Title/Company</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edward J. Lyczko</td>
<td>Product Standards Committee Chairman</td>
<td>Cleveland Clinic, Cleveland, Ohio</td>
</tr>
<tr>
<td>Rand H. Ackroyd</td>
<td>Rand Technical Consulting, LLC</td>
<td>Newburyport, Massachusetts</td>
</tr>
<tr>
<td>William Briggs, Jr.</td>
<td>MGJ Associates</td>
<td>New York, New York</td>
</tr>
<tr>
<td>Judson W. Collins</td>
<td>JULYCO Professionals</td>
<td>Mannford, Oklahoma</td>
</tr>
<tr>
<td>A. Richard Emmerson</td>
<td>General Interest</td>
<td>Buffalo Grove, Illinois</td>
</tr>
<tr>
<td>Ron George</td>
<td>Ron George Design & Consulting</td>
<td>Newport, Michigan</td>
</tr>
<tr>
<td>Charles Gross</td>
<td>International Association of Plumbing and Mechanical Officials</td>
<td>Ontario, California</td>
</tr>
<tr>
<td>Steven Hazzard</td>
<td>ASSE Staff Engineer/ Standards Coordinator</td>
<td>Westlake, Ohio</td>
</tr>
<tr>
<td>John F. Higdon, P.E.</td>
<td>Apollo Valves/Conbraco Industries, Inc.</td>
<td>Pageland, South Carolina</td>
</tr>
<tr>
<td>Chuck Lott</td>
<td>Precision Plumbing Products, Inc.</td>
<td>Portland, Oregon</td>
</tr>
<tr>
<td>Peter Marzec</td>
<td>United Association of Plumbers and Pipefitters</td>
<td>Pearl River, New York</td>
</tr>
<tr>
<td>Hamid Naderi</td>
<td>International Code Council</td>
<td>Austin, Texas</td>
</tr>
<tr>
<td>Brad Noll</td>
<td>Wilkins, A Division of Zum Industries, Inc.</td>
<td>Paso Robles, California</td>
</tr>
<tr>
<td>Thomas C. Pitcherello</td>
<td>State of Pitcherello</td>
<td>Bordentown, New Jersey</td>
</tr>
<tr>
<td>Shabbir Rawalpindiwala</td>
<td>Kohler Company</td>
<td>Kohler, Wisconsin</td>
</tr>
<tr>
<td>Tsan-Liang Su, Ph.D.</td>
<td>Center for Environmental Systems</td>
<td>Stevens Institute of Technology, Hoboken, New Jersey</td>
</tr>
</tbody>
</table>

This is a preview of "ANSI/ASSE 1017-2009". Click here to purchase the full version from the ANSI store.
1017 Working Group

William Hall
1017 Working Group Chairman
Leonard Valve Co.
Cranston, Rhode Island

Rand H. Ackroyd
Rand Engineering
Newburyport, Massachusetts

Herb Barnhart
Tempress Limited
Mississauga, Ontario, Canada

Robert Castle
Honeywell Water Controls
Warwick, Rhode Island

William Chapin
Cash Acme / Reliance Worldwide Corp.
Cullman, Alabama

Richard Cota, Jr.
Leonard Valve Co.
Cranston, Rhode Island

Tom Eberhardy
Bradley Corp.
Menomonee Falls, Wisconsin

Susan Galayda
Product Listing Services
Litchfield, Ohio

Ron George
Ron George Design & Consulting Services
Monroe, Michigan

Greg Goodson
Apollo Valves/Conbraco Industries
Pageland, South Carolina

Steven Hazzard
American Society of Sanitary Engineering
Westlake, Ohio

John Higdon, PE
Apollo Valves/Conbraco Industries, Inc.
Pageland, South Carolina

Tim Kilbane
Symmons Industries, Inc.
Braintree, Massachusetts

Norm Kummerlen, PE
Moen, Inc.
North Olmsted, Ohio

Sally Remedios
Delta Faucet Company
Indianapolis, Indiana

Heath Sharp
Cash Acme / Reliance Worldwide Corp.
Brisbane, Australia
Table of Contents

Section I ... 1
 1.0 General .. 1
 1.1 Application .. 1
 1.2 Scope ... 1
 1.3 Reference Documents .. 1

Section II .. 2
 2.0 Test Specimens .. 2
 2.1 Samples Submitted .. 2
 2.2 Samples Tested .. 2
 2.3 Drawings ... 2
 2.4 Rejection ... 2

Section III .. 3
 3.0 Performance Requirements and Compliance Testing ... 3
 3.1 Conditioning Test .. 3
 Figure 1 .. 4
 3.2 Temperature Control Test ... 4
 Table 1 .. 5
 3.3 Hydrostatic Pressure Test ... 5

Section IV .. 6
 4.0 Detailed Requirements ... 6
 4.1 Materials .. 6
 4.2 Installation and Maintenance Instructions .. 6
 4.3 Identifications and Markings .. 6

Section V .. 7
 5.0 Definitions ... 7

Temperature Actuated Mixing Valves for Hot Water Distribution Systems
ASSE 1017 - 2009
Temperature Actuated Mixing Valves for Hot Water Distribution Systems

Section I

1.0 General

1.1 Application
Temperature Actuated Mixing Valves for Hot Water Distribution Systems are used for controlling in-line water temperatures in domestic hot water systems and shall be installed at the hot water source. They are not intended for end use applications including emergency eyewash and shower equipment.

1.2 Scope

1.2.1 Description
Temperature Actuated Mixing Valves for Hot Water Distribution Systems (herein referred to as “device”) shall consist of a hot water inlet connection, a cold water inlet connection, a mixed water outlet connection, a thermal element and a means for adjusting the mixed water outlet temperature.

1.2.2 Connections
Dimensions of pipe threads, flanges and other connections shall conform to appropriate industry standards.

1.2.3 Maximum Working Pressure
The maximum working pressure of the device shall be at least 125.0 psi (861.9 kPa).

1.2.4 Temperature Range

1.2.4.1 Inlet Water Temperature Range
The hot water inlet temperature range shall be 120.0°F - 180.0°F (48.9°C - 82.2°C) and the cold water inlet temperature range shall be 39.0°F - 80.0°F (3.9°C - 26.7°C).

1.2.4.2 Outlet Water Temperature Range
The device shall be capable of supplying the domestic hot water distribution system with a minimum adjustable range of 105.0°F - 120.0°F (40.6°C - 48.9°C), provided the hot water supply temperature is at least 20.0°F (11.1°C) greater than the outlet water temperature setting.

1.3 Reference Documents
Referenced industry standards shall be the latest edition in effect on the date of the issuance of this standard.