This is a preview of "ASSE 1013-2011". Click here to purchase the full version from the ANSI store.

ASSE Standard #1013-2011

ASSE Board Approved: August, 2011 ANSI Approved: August, 2011

American Society of Sanitary Engineering

Performance Requirements for **Reduced Pressure Principle Backflow Preventers and Reduced Pressure Principle Fire Protection Backflow Preventers**

An American National Standard

This is a preview of "ASSE 1013-2011". Click here to purchase the full version from the ANSI store.

General Information

Neither this standard, nor any portion thereof, may be reproduced without the written consent of the American Society of Sanitary Engineering.

Instructions for receiving authorization to display the ASSE Seal are available from ASSE's International Office. Organizations wishing to adopt or list any ASSE Standard should print the ASSE Standard number on the cover page first and in equal or larger type to that of the adopting or listing organization.

American Society of Sanitary Engineering Westlake, Ohio Copyright © 2011, 2009, 2005, 1999, 1993, 1988, 1971 All rights reserved. This is a preview of "ASSE 1013-2011". Click here to purchase the full version from the ANSI store.

Foreword

This foreword shall not be considered a part of the standard. However, it is offered to provide background information.

ASSE Product Standards are developed in the interest of consumer safety.

In potable water supply systems, there are many varied conditions which can develop and cause a reversal of the normal direction of flow (backflow) in the water supply lines. By this reversal of direction of flow, water from unintended sources can enter and contaminate the potable water in the supply lines and potable water source.

There are two basic types of backflow, identified by the two conditions that cause it:

- (1) Backpressure backflow is a reversal of the normal direction of flow in the pipe line due to a condition which causes the pressure in the system being supplied to become greater than that in the supply line; the system pressure being always above atmospheric.
- (2) Backsiphonage backflow is a reversal of the normal direction of flow in the pipe line due to a negative pressure (vacuum) being created in the supply line with the backflow source subject to atmospheric pressure.

The type of occupancy of the premises, the design and construction of the system, and the manner in which it is used are major influences on the possible incidence of backflow. Consequently, the degree of the hazard to which persons may be exposed varies from discomfort and minor illness, to fatal, if the backflow of contaminants into the potable water system is not completely prevented.

Due to the many variables in systems, devices of different performance characteristics are needed; each tailored to the system and its protection needs. This standard covers two (2) types of devices, which are identified as Reduced Pressure Principle Backflow Preventers (RP) and Reduced Pressure Principle Fire Protection Backflow Preventers (RPF). The RP and the RPF are identical in their backflow protection. The RPF, which was added to this standard in 1999, has specific performance requirements relating to its use on fire protection systems.

This standard is a composite of the most practical and effective behavioral characteristics for devices of this type, drawn on the experience of engineers, manufacturers, public health officials and others who are knowledgeable in this field and who have the responsibility of protecting our potable water supplies.

Although many of the material specifications are detailed within Section 4.1 of this standard, it is the responsibility of the manufacturer and the installer to comply with the relevant jurisdictional requirements.

The working group, which developed this standard revision, was set up within the framework of the Product Standards Committee of the American Society of Sanitary Engineering.

Recognition is made of the time volunteered by members of this working group and of the support of the manufacturers who participated in meetings for this standard.

This standard does not imply ASSE's endorsement of a product which conforms to these requirements.

Compliance with this standard does not imply acceptance by any code body.

It is recommended that these devices be installed consistent with local codes by qualified and trained professionals.

This standard was promulgated in accordance with procedures developed by the American National Standards Institute (ANSI).

This edition was approved by the ASSE Board of Directors on August 9, 2011 as an ASSE standard.

2011 Product Standards Committee

Joseph Fugelo

Product Standards Committee Chairman Labov Co. Philadelphia, Pennsylvania

Rand Ackroyd

Rand Technical Consulting, LLC Newburyport, Massachusetts

William Briggs Jr.

MGJ Associates New York, New York

Maribel Campos

ICC Evaluation Services Whittier, California

Judson Collins

Julyco Professionals Mannford, Oklahoma

Ron George

Plumb-Tech Design & Consulting Services , LLC Newport, Michigan

Steven Hazzard

ASSE Staff Engineer Westlake, Ohio

Charles Hernandez

Spears Manufacturing Bolingbrook, Illinois

John F. Higdon P.E.

Apollo Valves / Conbraco Industries Inc Matthews, North Carolina

Chuck Lott

Precision Plumbing Products Portland, Oregon

Peter Marzec

United Association of Plumbers and Pipefitters Pearl River, New York

Hamid Naderi

ICC – Texas Austin, Texas

Brad Noll

Wilkins / A Division of Zurn Paso Robles, California

Thomas Pitcherello

State of New Jersey Bordentown, New Jersey

Shabbir Rawalpindiwala

Kohler Company Kohler, Wisconsin

Tsan-Liang Su, PhD

Stevens Institute of Technology Hoboken, New Jersey

RP / DC Working Group

John F. Higdon, P.E.

Working Group Chairman Apollo Valves / Conbraco Industries, Inc. Matthews, North Carolina

Rand H. Ackroyd

Rand Engineering Newburyport, Massachusetts

Stu Asay, P.E.

Backflow Prevention Institute Westminster, Colorado

Paul Bladdick

LPB Company, Inc. White Lake, Michigan

William Chapin

Cash Acme / Reliance Worldwide Cullman, Alabama

Sean Cleary

IAPMO Scranton, Pennsylvania

Steven Hazzard

ASSE Staff Engineer Westlake, Ohio

Sara Marxen

ASSE Compliance Coordinator Westlake, Ohio

Brad Noll

Wilkins, a Division of Zurn Industries Paso Robles, California

Paul Schwartz, P.E.

University of Southern California FCCCHR Los Angeles, California

Ken Van Wagnen

ASSE Product Standards Coordinator Westlake, Ohio

Jeff Vlisides

ABPA Michigan Waterford, Michigan

Stanley Ziobro

Factory Mutual Approvals Norwood, Massachusetts

Table of Contents

Section		. 1	
1.0	General		
1.1	Application	. 1	
1.2	Scope	. 1	
	Table 1	. 2	
1.3	Limitations on Design	. 3	
1.4	Reference Standards	4	
Section	Section II		
2.0	Test Specimens		
2.0	Samples Submitted for Test		
2.1	Samples Tested		
2.2	Drawings		
2.3	Rejection		
2.4	Manifold Assembly		
3.0	Performance Requirements and Compliance Testing		
3.1	Independence of Components		
3.2	Hydrostatic Test of Complete Assembly		
3.3	Seat Leakage Test for Shut-off Valves		
3.4	Hydrostatic Backpressure Test of Checks		
3.5	Allowable Pressure Loss at Rated Flow	. 8	
	Figure 1		
	Figure 1A		
3.6	Relief Valve Opening Test		
3.7	Sensitivity of Differential Pressure Relief Valve Test		
3.8	Drip Tightness of First Check	11	
3.9	Drip Tightness of Second Check		
3.10	5 1 11 5		
3.11	Relief Valve Discharge with Positive Supply Pressure		
	Table 2		
	Backpressure/Backsiphonage Test		
	Relief Valve vs. Supply Pressure Fluctuation Test for Type RPF Assemblies Only		
3.14	Air Gap Device Backsiphonage Test		
3.15	Deterioration at Manufacturer's Extremes of Temperature and Pressure Ranges	15	
	Table 3	16	
	Cycle Test		
3.17	Body Strength Test for Type RPF Assemblies	18	
3.18	Seat Adhesion Test for Type RPF Assemblies	18	
3.19	High Velocity Test for Type RPF Assemblies	19	
3.20	Field Evaluation Test for RP and RPF Devices When Required by the Authority		
	Having Jurisdiction	19	
Section	V	21	
4.0	Detailed Requirements		
4.1	Materials		
4.2	Grooved Connections		
4.3	Marking Instructions		
4.4	Installation and Maintenance Instructions		
	V		
	Definitions		
5.0		23	

Appendix	x A - Installation Guidelines	24
A1.0	Recommended Installation Guidelines	24
A1.1	General	24
A1.2	Orientation	24
A1.3	Side Clearances	25

Reduced Pressure Principle Backflow Preventers and Reduced Pressure Principle Fire Protection Backflow Preventers

Section I

1.0 General

1.1 Application

The purpose of a Reduced Pressure Principle Backflow Preventer (RP) and a Reduced Pressure Principle Fire Protection Backflow Preventer (RPF) (herein referred to as the "assembly") is to keep contaminated water from flowing back into a potable water distribution system when some abnormality in the system causes the pressure to be temporarily higher in the contaminated part of the system than in the potable water supply piping.

1.2 Scope

1.2.1 Description

This standard applies to two types of backflow prevention assemblies, identified as:

- (a) Reduced Pressure Principle Backflow Preventers (RP); and
- (b) Reduced Pressure Principle Fire Protection Backflow Preventers (RPF).

These assemblies consist of two (2) independently-acting check valves, internally force loaded to a normally closed position and separated by an intermediate chamber (or zone) in which there is a hydraulically operated relief means for venting to atmosphere, internally force loaded to a normally open position. These assemblies are designed to operate under continuous pressure conditions. The assembly shall include two (2) properly located, tightly closing shut-off valves, per Section 1.3.2.7, and properly located test cocks, per Section 1.3.2.5.

This standard also applies to Manifold Reduced Pressure Principle Backflow Assemblies consisting of two (2) or more complete Reduced Pressure Principle Backflow Preventers in parallel. The assemblies do not need to be of the same pipe size. The manifold size shall be identified by the single inlet and outlet of the Manifold Reduced Pressure Principal Backflow Assembly. Manifold Reduced Pressure Principle Backflow Assemblies shall include line-sized shut-off valves on each inlet and outlet of the assemblies making up the manifold.

1.2.2 Size Range

Connection pipe sizes shall be in accordance with Table 1.