ASSE International

Performance Requirements for

Backflow Prevention Devices for Hand-Held Showers
General Information

Neither this standard, nor any portion thereof, may be reproduced without the written consent of ASSE International.

No product may be said to be ASSE approved unless the manufacturer has applied to ASSE, has had his product tested according to the applicable ASSE Standards, and when the product has passed the test, displays the ASSE Seal on the product.

Instructions for receiving the authorization to display the Seal are available from ASSE’s International Office. Organizations wishing to adopt or list any ASSE Standard should print the ASSE Standard number on the cover page first and in equal or larger type to that of the adopting or listing organization.
Foreword

This foreword shall not be considered a part of the standard; however, it is offered to provide background information.

ASSE standards are developed in the interest of consumer health and safety.

Hand showers, sometimes identified as “telephone showers”, provide a desirable means for bathing as well as some therapeutic services. The ASSE has recognized that these devices, due to their mobility in service, can create unsanitary conditions in the potable water lines unless preventative means are provided in the installation.

Loss of water supply pressure can create a condition in which contaminated water can be caused to backflow into the potable water lines. This could occur when a hand-held shower is submersed in non-potable water; and therefore it is essential that adequate means to protect against backflow be provided.

Loss of water pressure is not a frequent occurrence, but it is a possibility. Many plumbing codes mandate that all hand-held shower installations be provided with means of protecting against backsiphonage and backpressure conditions.

This performance standard has been developed around well established and extensively field tested principles for backflow prevention devices of this class. The updates included in the 2005 edition of ASSE 1014 are intended to refine the scope and application to backflow prevention devices that are separately attached or integral to hand-held showers, while relying on ASME A112.18.1 Plumbing Fixture Fittings for the remaining performance requirements. Other devices such as those complying with ASSE Standard #1001 and ASSE Standard #1011, when installed in a properly designed system, can provide equivalent protection from backsiphonage and/or backpressure conditions.

Recognition is made of the time volunteered by members of this working group and of the support of the manufacturers who also participated in the meetings for this standard.

The standard does not imply ASSE’s endorsement of a product which conforms with these requirements.

Compliance with this standard does not imply acceptance by any code body.

It is recommended that these devices be installed consistent with local codes.

This standard was promulgated in accordance with procedures developed by the American National Standards Institute (ANSI).
2003-04 Product Standards Committee

Richard J. Prospal
Product Standards Committee Chairman
Prospal Consulting Services, Inc.
Brunswick, Ohio

Rand H. Ackroyd
Rand Engineering
Newburyport, Massachusetts

Michael Beckwith
State of Wisconsin Department of Commerce
Madison, Wisconsin

Gunnar O. Collins
Collins Backflow Specialists, Inc.
Palatine, Illinois

Judson Collins
Oklahoma State Health Department
Oklahoma City, Oklahoma

Shannon M. Corcoran
ASSE Standards Coordinator
Westlake, Ohio

A. Richard Emmerson
General Interest
Buffalo Grove, Illinois

Charles Gross
International Association of Plumbing and Mechanical Officials
Walnut, California

Steven Hazzard
ASSE Staff Engineer
Westlake, Ohio

Dale Holloway
SGS United States Testing Company
Tulsa, Oklahoma

Valentine Lehr, P.E.
Lehr Associates
New York, New York

Peter Marzec
United Association of Plumbers and Pipefitters
Washington, D.C.

Perry W. Meikle, Jr.
Perry W. Meikle Consulting Engineer
Antioch, California

Shabbir Rawalpindiwala
Kohler Company
Kohler, Wisconsin

Lynne Simnick
International Code Council, Inc.
Country Club Hills, Illinois

Jack Vilendre
Precision Plumbing Products, Inc.
Portland, Oregon

David Viola
Plumbing Manufacturers Institute
Schaumberg, Illinois

Joseph C. Zaffuto, P.E.
ASSE Staff Engineer
1014 Working Group

Gunnar O. Collins
Collins Backflow Specialists, Inc.
Palatine, Illinois

John Petrovic
Alsons / Mixet
Hillsdale, Michigan

Nick Covino
American Standard, Inc.
Piscataway, New Jersey

Shabbir Rawalpindiwala
Kohler Company
Kohler, Wisconsin

A. Richard Emmerson
General Interest
Buffalo Grove, Illinois

Sally Remedios
Delta Faucet Company
Indianapolis, Indiana

James Galvin
Symmons Industries, Inc.
Braintree, Massachusetts

Michael Santora
Speakman Corp.
Wilmington, Delaware

Steven Hazzard
ASSE Staff Engineer
Westlake, Ohio

Gary Turner
Waterpik Technologies, Inc.
Fort Collins, Colorado

Norman Kummerlen
Moen, Inc.
North Olmsted, Ohio

David Viola
Plumbing Manufacturers Institute
Schaumburg, Illinois

Michael Martinez
Price Pfister
Lake Forest, California

Joseph C. Zaffuto, P.E.
ASSE Staff Engineer
Westlake, Ohio

Lee Mercer
Moen, Inc.
North Olmsted, Ohio
Table of Contents

Section I ... 1
 1.0 General .. 1
 1.1 Application ... 1
 1.2 Scope ... 1
 1.3 Reference Standards .. 1

Section II .. 2
 2.0 Test Specimens ... 2
 2.1 Samples Submitted ... 2
 2.2 Samples Tested .. 2
 2.3 Drawings .. 2
 2.4 Rejection .. 2

Section III ... 3
 3.0 Performance Requirements and Compliance Testing ... 3
 3.1 Deterioration at Extremes of Temperature and Pressure Test ... 3
 3.2 Life Cycle Test ... 3
 3.3 Backpressure Test ... 4
 Figure 1 ... 4
 3.4 Backsiphonage Test ... 4
 Figure 2 ... 5
 Figure 3 ... 5

Section IV .. 6
 4.0 Detailed Requirements ... 6
 4.1 Materials .. 6
 4.2 Installation Instructions .. 6
 4.3 Markings .. 6

Section V .. 6
 5.0 Definitions ... 6
Backflow Prevention Devices for Hand-Held Showers

Section I

1.0 General

1.1 Application
This standard provides performance requirements for backflow prevention device(s) for hand-held showers (herein referred to as the “device”) in the interest of health and safety.

1.2 Scope

1.2.1 Description
These devices provide backflow protection against backsiphonage and backpressure in hand-held showers. These are separate devices or are integral with wall-mounted or deck-mounted tub fillers, flexible hoses, or components that are attached to shower arms.

1.2.2 General Requirements
The device(s) and associated components shall comply with the requirements of this standard and the applicable requirements of ASME A112.18.1 unless stated otherwise herein.

1.2.3 Minimum Working Pressure
The device shall be designed to withstand an inlet working pressure of a minimum of 125.0 psi (861.9 kPa).

1.2.4 Temperature

1.2.4.1 Temperature Range
The device shall be designed to function at temperatures from 40.0 °F to 120.0 °F (4.4 °C to 48.9 °C).

1.2.4.2 Maximum Temperature Spike
The device shall withstand temperature spikes up to 150 °F (65.6 °C).

1.3 Reference Standards

1.4 Reference Standards
Reference to industry standards shall mean the latest edition of the standard.

• ASME A112.18.1 Plumbing Fixture Fittings