American National Standard

ASSE 1020-2020

Performance Requirements for

Pressure Vacuum Breaker Assemblies

ASSE Board Approved: January 2020
ANSI Approved: February 2020
ICS Codes: 23 060 99 | 91 140 60
General Information

Neither this standard, nor any portion thereof, may be reproduced without the written consent of ASSE International.

No product may be said to be ASSE listed unless the manufacturer has applied to ASSE International, has had the product tested by an official ASSE recognized independent laboratory, according to the applicable standard, passed the test, and has been reviewed and approved by the consensus ASSE International Seal Control Board. Having completed the aforementioned, the manufacturer may then display the ASSE Seal on the product.

Instructions for receiving the authorization to display the Seal are available from the ASSE International Office. Organizations wishing to adopt or list any ASSE standard should print the ASSE standard number on the cover page first and in equal or larger type to that of the adopting or listing organization.
This foreword shall not be considered a part of the standard; however, it is offered to provide background information.

ASSE International standards are developed in the interest of consumer safety. ASSE considers product performance standards to be of great value in the development of improved plumbing systems.

The working group that developed this standard was set up within the framework of the ASSE International Product Standards.

This standard was approved by the Product Standards Committee to extend the ASSE portfolio of standards for backpressure and backsiphonage backflow prevention devices for pipe applied vacuum breakers.

For pipe applied service conditions in water supply lines, there are two recognized basic conditions for which vacuum breakers, anti-siphon type, are needed. These two classifications are atmospheric and pressure type. In one instance, the device is under pressure only when there is a demand for water in the equipment being served. The atmospheric type of device is recommended when the service line is under pressure only for short periods of time.

For service conditions where the pressure in the service line must be continuous, a vacuum breaker must be constructed with built-in means to mechanically force the atmospheric air inlet valve to open should a negative pressure (vacuum) be created in the supply line. For this class of service, a "pressure type" device is recommended for use.

ASSE 1020 was originally titled Vacuum Breakers, Anti-Siphon, Pressure Type and was approved by the ASSE Product Standards Committee, received the concurrence of the ASSE Board of Directors, and was issued as an official ASSE standard in November 1974. During its revision in 1989, the title was changed to Pressure Vacuum Breaker Assembly. This change also included a recommendation for outdoor usage of the assembly.

Recognition is made of the time volunteered by members of this working group and of the support of manufacturers, who also participated in meetings for this standard.

This standard does not imply ASSE International’s endorsement of a product that conforms to these requirements.

Compliance with this standard does not imply acceptance by any code body.

It is recommended that these devices be installed consistent with local codes by qualified and trained professionals.

This standard was promulgated in accordance with the ASSE Procedures for Standards Development as approved by the American National Standards Institute (ANSI).
ASSE Vacuum Breaker Standards

<table>
<thead>
<tr>
<th>ASSE Standard Number</th>
<th>Standard Name</th>
<th>Typical Use</th>
<th>Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>Atmospheric Type Vacuum Breakers</td>
<td>• Faucet with hose thread spout</td>
<td>Prevents Back-Siphonage: • Outlet is open to atmosphere</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Water closet fill valve</td>
<td>• Not subjected to backpressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Not be subjected to more than twelve (12) hours of continuous water pressure</td>
</tr>
<tr>
<td>1011</td>
<td>Hose Connection Vacuum Breakers</td>
<td>• Hose connections, such as hose bib, wall hydrant, yard hydrant</td>
<td>Prevents backflow by use of a SINGLE CHECK valve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prevents back-siphonage by use of AIR PORTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prevents back-pressure by use of check valve and relief of back-pressure through air ports. i.e. relieves pressure in the hose.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Non-removable and non-testable</td>
</tr>
<tr>
<td>1020</td>
<td>Pressure Vacuum Breakers</td>
<td>• Irrigation systems</td>
<td>Prevents Back-Siphonage: • Uses a SINGLE CHECK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Industrial processes</td>
<td>• Not subjected to back-pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Can be subjected to continuous water pressure in excess of twelve (12) hours</td>
</tr>
<tr>
<td>1052</td>
<td>Hose Connection Backflow Preventers</td>
<td>• Hose connections, such as hose bib, wall hydrant, yard hydrant</td>
<td>Same as a 1011 device except there are two check valves. One check valve holds the pressure in the hose. The Intermediate chamber between check valves becomes atmospheric. Device is non-removable but is testable.</td>
</tr>
<tr>
<td>1056</td>
<td>Spill Resistant Vacuum Breakers</td>
<td>• Indoor plumbing assemblies</td>
<td>Same as 1020 but does not spill water when pressurized.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Medical equipment</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard No.</th>
<th>Dual Check</th>
<th>Air Ports</th>
<th>Backflow</th>
<th>Back-Siphonage</th>
<th>Back Pressure</th>
<th>Frost Free</th>
<th>Removable</th>
<th>Testable</th>
<th>High Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>1011</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>1020</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1052</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1056</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
2019 Product Standards Committee

Tsan-Liang Su, PhD, Chairperson
Stevens Institute of Technology
Hoboken, NJ

William Briggs, Jr.
JB&B
New York, NY

Terry Burger
NSF International
Cleveland, OH

William Chapin
Professional Code Consulting, LLC
Cullman, AL

Mark E. Fish
Zurn Industries, LLC
Cary, NC

Ron George
Plumb-Tech Design & Consulting
Newport, MI

Daniel Gleiberman
Sloan
Los Angeles, CA

Brandon Gunnell
Precision Plumbing Products
Portland, OR

Chris Haldiman
Watts Water Technologies
Springfield, MO

John F. Higdon, P.E.
Supply Source Products
Matthews, NC

Conrad L. Jahrling
(non-voting)
ASSE International
Chicago, IL

Jim Kendzel
American Supply Association
Minneapolis, MN

Ramiro Mata
American Society of Plumbing Engineers (ASPE)
Cleveland, OH

Thomas Pitcherello
State of New Jersey
Bordentown, NJ

Daniel Rademacher
Plumbing Code and Design Consulting
Butte, MT

Shabbir Rawalpindiwala
Kohler Company
Kohler, WI

Billy Smith
American Society of Plumbing Engineers (ASPE)
Montgomery, AL
1020 Working Group

Chris Corral
Zurn-Wilkins
Paso Robles, CA

Greg Goodson
Apollo/Conbraco
Pageland, SC

Chris Haldiman
Watts Water Technologies
Springfield, MO

Conrad L. Jahrling (non-voting)
ASSE International
Chicago, IL

Matthew Kapcia
The Backflow School, Inc.
Warren, MI

Bob Purzycki
BAVCO
Long Beach, CA

Philip Yontz
Apollo/Conbraco
Pageland, SC
Table of Contents

Section I
1.0 General ... 1
1.1 Application ... 1
1.2 Scope ... 1
 Figure 1 .. 2
1.3 Mechanical Function .. 2
 Table 1 .. 3
1.4 Reference Documents .. 3

Section II
2.0 Test Specimens and Test Laboratory 4

Section III
3.0 Performance Requirements and Compliance Testing 5
3.1 Hydrostatic Test of the Complete Device 5
 Figure 1 .. 5
3.2 Hydrostatic Test of the Check Valve 6
 Figure 3 .. 6
3.3 Pressure Drop at Rated Flow ... 6
 Figure 4 .. 6
 Table 2 .. 7
3.4 Atmospheric Vent ... 7
3.5 Drip Tightness of Check Valve Test 7
 Figure 5 .. 8
3.6 Air Passage Comparative Areas 8
 Figure 6 .. 8
3.7 Backsiphonage Test ... 9
 Table 3 .. 9
 Figure 7 .. 10
 Figure 8 .. 10
 Figure 9 .. 10
 Figure 10 .. 11
3.8 Shock (Water Hammer) Test of the Device 11
3.9 Deterioration at Extremes of Manufacturer’s Temperature 11
3.10 Life Cycle Test .. 12

Section IV
4.0 Detailed Requirements .. 13
4.1 Materials .. 13
4.2 Identification and Markings ... 14
4.3 Installation and Maintenance Instructions 14

Section V
5.0 Definitions ... 15
Performance Requirements for Pressure Vacuum Breaker Assemblies

Section I

1.0 General

1.1 Application

Pressure Vacuum Breaker Assemblies (herein referred to as “device”) are for installation in water supply lines to prevent the entrance of non-potable material into the potable water supply by backspontaneous only. It is not for use in any system where backpressure can be applied to the device. It is intended for use in both high and low hazard applications.

When a supply pressure is between 1.0 psi to 2.0 psi (6.9 kPa to 13.8 kPa), the air inlet valve is open and the device will continuously discharge. Due to this probability of water discharge from the atmospheric air inlet valve, the device shall be installed where water discharge does not cause damage.

1.2 Scope

1.2.1 Description

The assembly shall contain an independently acting check valve force loaded to the closed position, and an independently acting air inlet valve located downstream of the check valve that is force loaded to the open position. The assembly shall also include two tightly closing shutoffs, one at the inlet of the assembly and one at the outlet of the assembly, and two tightly closing test cocks, one immediately upstream and one immediately downstream of the check valve.