ASSE Standard #1069-2005 ASSE Board Approved: January 2005

ASSE International

Performance Requirements for

Automatic Temperature Control Mixing Valves

General Information

Neither this standard, nor any portion thereof, may be reproduced without the written consent of ASSE International.

No product may be said to be ASSE approved unless the manufacturer has applied to the ASSE, has had his product tested according to the applicable ASSE Standards, and when the product has passed the test, displays the ASSE Seal on the product.

Instructions for receiving the authorization to display the Seal are available from ASSE's International Office. Organizations wishing to adopt or list any ASSE Standard should print the ASSE Standard number on the cover page first and in equal or larger type to that of the adopting or listing organization.

ASSE International Mokena, Illinois Copyright © 2005 All rights reserved.

Foreword

This foreword shall not be considered a part of the standard; however, it is offered to provide background information.

ASSE standards are developed in the interest of consumer safety.

This standard was developed for devices that service end use fixture fittings, including but not limited to, gang showers and sitz baths, by supplying tempered water at a preset temperature through a single supply pipe. The need for this standard exists because no other standard covers products that supply a wide range of demand in flow rate while providing final control of the mixed water temperature. These devices are not intended to be installed for individual showers or tub/shower combinations.

It is understood that further mixing of water downstream of these devices will not occur. These devices shall be the final temperature control of the water that comes in contact with the end user.

Control of the final outlet temperature of these devices shall be set by either the installer or building owner. The end user generally does not have access to the device. These devices generally have one cold water inlet connection, one hot water inlet connection, and a mixed water outlet connection(s). The valves covered by this standard are only those which will, in cases of changes in hot or cold water supply pressure, temperature, or loss of cold water supply, reduce the risk of scalding and thermal shock.

Recognition is made of the time and support of those who participated in the development of this standard.

This standard does not imply ASSE's endorsement of a product which conforms with these requirements.

Compliance with this standard does not imply acceptance by any code body.

It is recommended that these devices be installed consistent with local codes.

This standard was promulgated in accordance with procedures developed by the American National Standards Institute (ANSI).

2003-04 Product Standards Committee

Richard J. Prospal

Product Standards Committee Chairman Prospal Consulting Services, Inc. Brunswick, Ohio

Rand H. Ackroyd

Rand Engineering Newburyport, Massachusetts

Michael Beckwith

State of Wisconsin Department of Commerce Madison, Wisconsin

Gunnar O. Collins

Collins Backflow Specialists, Inc. Palatine, Illinois

Jud Collins

Oklahoma State Health Department Oklahoma City, Oklahoma

Shannon M. Corcoran

ASSE Standards Coordinator Westlake, Ohio

A. Richard Emmerson

General Interest Buffalo Grove, Illinois

Charles Gross

International Association of Plumbing and Mechanical Officials Walnut, California

Steven Hazzard

ASSE Staff Engineer Westlake, Ohio

Dale Holloway

SGS United States Testing Company Tulsa, Oklahoma

Valentine Lehr, P.E.

Lehr Associates New York, New York

Peter Marzec

United Association of Plumbers and Pipefitters Washington, D.C.

Perry W. Meikle, Jr.

Perry W. Meikle Consulting Engineer Antioch, California

Shabbir Rawalpindiwala

Kohler Company Kohler, Wisconsin

Lynne Simnick

International Code Council, Inc. Country Club Hills, Illinois

Jack Vilendre

Precision Plumbing Products, Inc. Portland, Oregon

David Viola

Plumbing Manufacturers Institute Schaumberg, Illinois

Joseph C. Zaffuto, P.E.

ASSE Staff Engineer Westlake, Ohio

1069 Working Group

Rand H. Ackroyd

Rand Engineering Newburyport, Massachusetts

Herb Barnhart

Tempress Limited Missisauga, Ontario, Canada

Michael Brown

Cash Acme / Reliance Worldwide Corp. Cullman, Alabama

Robert Castle

Honeywell Water Controls Warwick, Rhode Island

Richard Cota, Jr.

Leonard Valve Company Cranston, Rhode Island

Richard Cruickshank

Tempress Limited Missisauga, Ontario, Canada

A. Richard Emmerson

General Interest Buffalo Grove, Illinois

Robert Eveleigh

Lawler Manufacturing Company Indianapolis, Indiana

Steve Ferrucci

Lawler Manufacturing Company Indianapolis, Indiana

Susan Galayda

Product Listing Services, Inc. Litchfield, Ohio

James Galvin

Symmons Industries, Inc. Braintree, Massachusetts

James Graves

Powers Process Controls Des Plaines, Illinois

William Hall

Leonard Valve Company Cranston, Rhode Island

Steven Hazzard

ASSE Staff Engineer Westlake, Ohio

John Higdon

Conbraco Industries, Inc. Matthews, North Carolina

Tim Kilbane

Symmons Industries, Inc. Braintree, Massachusetts

Norman Kummerlen

Moen, Inc. North Olmsted, Ohio

Ken Loewenthal

CSA International Cleveland, Ohio

Trevor Perera

CSA International Cleveland, Ohio

Shabbir Rawalpindiwala

Kohler Company Kohler, Wisconsin

Sally Remedios

Delta Faucet Company Indianapolis, Indiana

Heath Sharp

Cash Acme / Reliance Worldwide Corp. Cullman, Alabama

1069 Working Group

Jack Vilendre

Precision Plumbing Products, Inc. Portland, Oregon

David Viola

Plumbing Manufacturers Institute Schaumburg, Illinois

Brian Weltman

Precision Plumbing Products, Inc. Portland, Oregon

Joseph C. Zaffuto, P.E.

ASSE Staff Engineer Westlake, Ohio

Table of Contents

Section I1		
1.0	General	1
1.1	Application	1
1.2	Scope	1
1.3	Reference Standards	1
Section II		
2.0	Test Specimens	2
2.1	Samples Submitted	2
2.2	Samples Tested	2
2.3	Drawings	2
2.4	Rejection	2
	·	
Section	III	3
3.0	Performance Requirements and Compliance Testing	3
3.1	High Temperature Conditioning Test	3
3.2	Working Pressure Test	3
3.3	Life Cycle Test	3
	Figure 1	4
	Table 1	4
3.4	Flow Rate and Pressure Drop Test	4
3.5	Regulation and Temperature Variation Test	4
	Figure 2	5
	Figure 3	6
3.6	Cold Water Supply Failure Test	7
3.7	Cross Flow Test	7
3.8	Hydrostatic Pressure Test	7
Section		8
4.0	Detailed Requirements	8
4.1	Materials	8
4.2	Marking of Devices	8
4.3	Installation and Maintenance Instructions	8
4.4	Accessibility	8
Section V		
5.0	Definitions.	9
		-

Automatic Temperature Control Mixing Valves

Section I

1.0 General

1.1 Application

These devices are intended to control the water temperature to individual or multiple fixtures to reduce the risk of scalding and thermal shock. Shut-off(s) downstream of the device shall be permitted. These devices are intended to be installed where the bather has no access to the temperature adjustment means, and where no further mixing occurs downstream of the device.

1.2 Scope

1.2.1. Description

These devices shall be designed to supply only tempered water to the end user, and automatically compensate for pressure and/or temperature variations in water distribution systems. These devices shall have the capability to significantly reduce the outlet flow in the event of a cold water distribution system failure. The device shall be equipped with an adjustable means to limit the setting of the device towards the hot position. The device is designed to be the final temperature control.

1.2.2 Maximum Working Pressure

The maximum working pressure of the device shall be at least 125.0 psi (861.9 kPa).

1.2.3 Temperature Range

1.2.3.1 Inlet Water Temperature Range

The maximum inlet hot water temperature shall be 180.0 °F (82.2 °C); and the inlet cold water temperature range shall be 39.0 °F to 80.0 °F (3.9 °C to 26.7 °C).

1.2.3.2 Outlet Water Temperature Range

The device shall be capable of supplying a minimum adjustable outlet water temperature range of 100.0 °F to 115.0 °F (37.8 °C to 46.1 °C) provided the hot water supply temperature is at least 20.0 °F (11.0 °C) greater than the outlet temperature setting. The maximum outlet temperature of the device shall be 120.0 °F (48.9 °C) when the temperature limiting means is adjusted and the device is tested in accordance with Section 3.6.

1.2.4 Minimum Flow Rate

These devices are designed to function at a flow of 2.5 GPM (9.5 L/min).

1.3 Reference Standards

Referenced industry standards shall be the latest edition.