ASSE International

Performance Requirements for

Backflow Preventer for Beverage Dispensing Equipment

An American National Standard
General Information

Neither this standard, nor any portion thereof, may be reproduced without the written consent of ASSE International.

No product may be said to be ASSE listed unless the manufacturer has applied to ASSE International, has had its product tested according to the applicable standards, and when the product has passed the test, displays the ASSE Seal on the product.

Instructions for receiving the authorization to display the seal are available from the ASSE International office. Organizations wishing to adopt or list any ASSE International standard should print the ASSE International standard number on the cover page first and in equal or larger type to that of the adopting or listing organization.
This foreword shall not be considered a part of the standard; however, it is offered to provide background information.

The need for this standard arose from numerous requests by regulatory authorities, manufacturers of backflow prevention devices, consumers, and users of beverage dispensing equipment.

Concerns have been raised that a dual check valve alone will not show any visible indication of failure. ASSE Standard #1022, *Performance Requirements for Backflow Preventer for Beverage Dispensing Equipment*, includes two check valves and an atmospheric vent. If there is failure of the downstream check and the backpressure exceeds the supply pressure, the vent will discharge, giving a visual indication of the check valve’s failure.

Although many of the material specifications are detailed within Section IV of this standard, it is the responsibility of the manufacturer and the installer to comply with the relevant jurisdictional requirements.

This standard was promulgated in accordance with procedures developed by the American National Standards Institute (ANSI).

Compliance with this standard does not imply acceptance by any code group unless the standard has been adopted by the code.

This standard is dedicated to the memory of Dale Tripp, who was influential in backflow prevention product development and without whom this revision would not have been released.
2016 Product Standards Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edward J. Lyczko</td>
<td>Chairperson, Cleveland Clinic – Retiree, Cleveland, OH</td>
</tr>
<tr>
<td>William Briggs, Jr.</td>
<td>MGJ Associates, New York, NY</td>
</tr>
<tr>
<td>Terry Burger</td>
<td>NSF International, Ypsilanti, MI</td>
</tr>
<tr>
<td>William Chapin</td>
<td>Professional Code Consulting, LLC, Cullman, AL</td>
</tr>
<tr>
<td>Mark Fish</td>
<td>Zurn Industries, LLC, Cary, NC</td>
</tr>
<tr>
<td>Ron George</td>
<td>Plumb-Tech Design & Consulting Services, LLC, Newport, MI</td>
</tr>
<tr>
<td>Daniel Gleiberman</td>
<td>Sloan, Los Angeles, CA</td>
</tr>
<tr>
<td>John F. Higdon, P.E.</td>
<td>Apollo Valves / Conbraco Industries, Inc., Matthews, NC</td>
</tr>
<tr>
<td>Gary Howard</td>
<td>Illinois Plumbing Inspector – Retiree, LaGrange, IL</td>
</tr>
<tr>
<td>Conrad L. Jahrling</td>
<td>(non-voting), ASSE International, Chicago, IL</td>
</tr>
<tr>
<td></td>
<td>Chuck Lott</td>
</tr>
<tr>
<td></td>
<td>Precision Plumbing Products, Portland, OR</td>
</tr>
<tr>
<td></td>
<td>Peter Marzec</td>
</tr>
<tr>
<td></td>
<td>United Association of Plumbers and Pipefitters, Pearl River, NY</td>
</tr>
<tr>
<td></td>
<td>Thomas Pitcherello</td>
</tr>
<tr>
<td></td>
<td>State of New Jersey, Bordentown, NJ</td>
</tr>
<tr>
<td></td>
<td>Daniel Rademacher</td>
</tr>
<tr>
<td></td>
<td>Plumbing Code and Design Consulting, Butte, MT</td>
</tr>
<tr>
<td></td>
<td>Shabbir Rawalpindiwala</td>
</tr>
<tr>
<td></td>
<td>Kohler Company, Kohler, WI</td>
</tr>
<tr>
<td></td>
<td>Billy Smith</td>
</tr>
<tr>
<td></td>
<td>American Society of Plumbing Engineers (ASPE), Montgomery, AL</td>
</tr>
<tr>
<td></td>
<td>Tsan-Liang Su, PhD</td>
</tr>
<tr>
<td></td>
<td>Stevens Institute of Technology, Hoboken, NJ</td>
</tr>
</tbody>
</table>
1022 Working Group

Dale Tripp, Chairperson
Anderson Brass Co.
Hartsville, SC

David Orton
NSF International
Ann Arbor, MI

John Higdon, PE
Apollo Valves / Conbraco Industries, Inc.
Pageland, SC

S. Scott Parkhurst
SGS North America Inc.
Tulsa, OK

Conrad L. Jahrling (non-voting)
ASSE International
Chicago, IL

George Thompson
The Coca-Cola Co.
Atlanta, GA

Backflow Preventer for Beverage Dispensing Equipment
ASSE 1022-2017
Table of Contents

Section I

1.0 General ... 1
1.1 Application ... 1
1.2 Scope ... 1
1.3 Table 1 ... 1
1.4 Reference Standards ... 2

Section II

2.0 Test Specimens .. 3
2.1 Samples Submitted for Test ... 3
2.2 Samples Tested ... 3
2.3 Drawings ... 3
2.4 Rejection ... 3

Section III

3.0 Performance Requirements and Compliance Testing ... 4
3.1 Hydrostatic Pressure ... 4
3.2 Hydrostatic Test of Check Valves ... 4
3.3 Atmospheric Port Leakage ... 5
3.4 Water Flow Test ... 6
3.5 Deterioration at Extremes of Manufacturer’s Rated Temperature and Pressure Ranges 6
3.6 Check Valve Sealing Pressure .. 7
3.7 Endurance and Cycle Testing ... 7
3.8 Atmospheric Port-Opening Pressure ... 8
3.9 Check Valve Leakage ... 9

Section IV

4.0 Detailed Requirements ... 10
4.1 Materials and Toxicity .. 10
4.2 Design and Construction ... 10
4.3 Markings .. 11
4.4 Installation Instructions .. 11

Section V

5.0 Definitions .. 12
Performance Requirements for Backflow Preventer for Beverage Dispensing Equipment

Section I

1.0 General

1.1 Application
Backflow Preventer for Beverage Dispensing Equipment (herein referred to as “device”) is engineered for installation in carbonated post-mix dispensing systems. This standard covers a backflow prevention device designed to protect the potable water supply serving beverage dispensing equipment. These devices are intended for use under continuous or intermittent pressure conditions.

1.2 Scope

1.2.1 Description
These devices shall consist of two independently acting check valves biased to a normally closed position. An atmospheric port shall be located between the check valves and shall be biased to a normally open position. The port shall vent liquids, gases, or both, under backflow conditions.

1.2.2 Minimum Flow
The device shall meet the minimum flow capacity as described in Table 1.

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Minimum Flow Rate at a Maximum Pressure Drop of 15.0 psi (103.4 kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GPM</td>
</tr>
<tr>
<td>A</td>
<td>1.00</td>
</tr>
<tr>
<td>B</td>
<td>2.00</td>
</tr>
<tr>
<td>C</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Type indicates the flow capacity of the device and not the connection size of the device.

1.2.3 Inlet and Outlet Connections
Inlet and outlet connections shall include 1/4” (8 DN), 3/8” (10 DN), and 1/2” (15 DN) nominal pipe size.

1.2.4 Pressure Range
These devices shall function properly over the pressure range of 10.0 psi to 200.0 psi (68.9 kPa to 1379 kPa).

1.2.5 Temperature Range
These devices shall function properly over the temperature range of 40.0 °F to 130.0 °F (4.4 °C to 54.44 °C).