This is a preview of "ASSE Standard 1071-2...". Click here to purchase the full version from the ANSI store.

**ASSE Standard #1071-2012** 

ASSE Board Approved: August, 2012 ANSI Approved: October, 2012

American Society of Sanitary Engineering

**Performance Requirements for** 

# Temperature Actuated Mixing Valves for Plumbed Emergency Equipment

An American National Standard

| This is a preview of "ASSE Standard 1071-2". Click here to purchase the full version from the ANSI store. |
|-----------------------------------------------------------------------------------------------------------|
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |

# **General Information**

Neither this standard, nor any portion thereof, may be reproduced without the written consent of the American Society of Sanitary Engineering.

No product may be said to be ASSE listed unless the manufacturer has applied to ASSE, has had its product tested according to the applicable standards, the product has passed the test and displays the ASSE Seal on the product.

Instructions for receiving the authorization to display the Seal are available from ASSE's International Office. Organizations wishing to adopt or list any ASSE Standard should print the ASSE Standard number on the cover page first and in equal or larger type to that of the adopting or listing organization.

American Society of Sanitary Engineering Westlake, Ohio Copyright © 2012, 2008
All Rights reserved.



## **Foreword**

This foreword is not a part of the standard. However, it is offered to provide background information.

Water mixing, also defined as tempering or blending, valves are used extensively in applications for emergency shower/eye and face wash systems to mix hot and cold water to provide "tepid" water. The term "tepid" has not been specifically defined, but is generally understood to mean "lukewarm" or "moderately warm."

These devices, while designed for automatic control of the hot water temperature within a reasonable degree of uniformity, should not be confused or used in place of ASSE Standard 1016, 1017, 1069 or 1070 devices. Valves designed to meet this standard are intended to be used as a component that can provide tepid water for emergency eye wash and shower equipment that comply with the requirements of ANSI Z358.1, American National Standard for Emergency Eyewash and Shower Equipment. These valves, by themselves, do not meet the requirements of ANSI Z358.1.

In circumstances where chemical reaction is accelerated by flushing fluid temperature, per ANSI Z358.1, a medical advisor should be consulted for the optimum temperature for each application.

The working group, which developed this standard revision, was set up within the framework of the Product Standards Committee of the American Society of Sanitary Engineering.

Recognition is made of the time volunteered by members of this working group and of the support of the manufacturers who also participated in the meetings for this standard.

This standard does not imply ASSE's endorsement of a product which conforms to these requirements.

Compliance with this standard does not imply acceptance by any code body.

It is recommended that these devices be installed consistent with local codes by qualified and trained professionals.

This standard was promulgated in accordance with procedures developed by the American National Standards Institute (ANSI).

This edition of the standard was approved by the ASSE Board of Directors on August 30, 2012 as an ASSE standard.

# 2012 Product Standards Committee

#### Joseph Fugelo, Chairman

Labov Co. Philadelphia, Pennsylvania

#### Rand Ackroyd

Rand Technical Consulting, LLC Newburyport, Massachusetts

#### William Briggs Jr.

MGJ Associates New York, New York

#### **Maribel Campos**

ICC Evaluation Services Whittier, California

#### **Judson Collins**

JULYCO Mannford, Oklahoma

#### **Ron George**

Plumb-Tech Design & Consulting Services, LLC Newport, Michigan

#### John F. Higdon P.E.

Apollo Valves / Conbraco Industries, Inc. Matthews, North Carolina

#### Jim Kendzel, MPH, CAE

American Society of Plumbing Engineers Des Plaines, Illinois

#### **Chuck Lott**

Precision Plumbing Products Portland, Oregon

#### **Peter Marzec**

United Association of Plumbers and Pipefitters Pearl River, New York

#### Ramiro Mata

ASSE Staff Engineer Westlake, Ohio

#### **Abraham Murra**

IAPMO R&T Ontario, California

#### **Brad Noll**

Wilkins / A Division of Zurn Paso Robles, California

#### **Thomas Pitcherello**

State of New Jersey Bordentown, New Jersey

#### Shabbir Rawalpindiwala

Kohler Company Kohler, Wisconsin

#### Tsan-Liang Su, PhD

Stevens Institute of Technology Hoboken, New Jersey

# 1071 Working Group

#### Rand Ackroyd, Chairman

Rand Engineering Newburyport, Massachusetts

#### **Richard Cota**

Leonard Valve Co. Cranston, Rhode Island

#### **Ned Dickey**

CSA International Cleveland, Ohio

#### **Tom Eberhardy**

Bradley Corporation Menomonee Falls, Wisconsin

#### **Robert Eveleigh**

Lawler Manufacturing Co. Indianapolis, Indiana

#### **Matt Fratantonio**

Watts Water Technology North Andover, Massachusetts

#### Jim Galvin

Plumbing Manufacturers International Sarasota, Florida

#### Ron George

Plumb-Tech Design & Consulting Services, LLC Newport, Michigan

#### **Steve Gregory**

Vernet SA New Palestine, Indiana

#### William Hall

Leonard Valve Cranston, Rhode Island

#### Steven Hazzard

ASSE Staff Engineer Westlake, Ohio

#### Tim Kilbane

Symmons Industries, Inc. Braintree, Massachusetts

#### **Mat Lunn**

Lawler Manufacturing Co. Indianapolis, Indiana

#### Sara Marxen

ASSE Compliance Coordinator Westlake, Ohio

#### Margo Mee

Haws Corporation Sparks, Nevada

#### Ryan Pfund

Bradley Corporation Menomonee Falls, Wisconsin

#### **Bert Rodriguez**

Apollo Valves/Conbraco Industries Pageland, South Carolina

#### **Purvez Saeed**

Powers, A Watts Technologies Company Buffalo Grove, Illinois

#### Ken Van Wagnen

ASSE Standards Coordinator Westlake, Ohio

### **Table of Contents**

| Section | N I                                             | 1    |
|---------|-------------------------------------------------|------|
| 1.0     | General                                         | 1    |
| 1.1     | Application                                     | 1    |
| 1.2     | Scope                                           | 1    |
|         | Table 1                                         | 2    |
| 1.3     | Reference Standards                             | 2    |
|         |                                                 |      |
|         | n II                                            |      |
| 2.0     | Test Specimens                                  | 4    |
|         | Samples Submitted                               |      |
| 2.2     | Samples Tested                                  | 4    |
| 2.3     | Drawings                                        | 4    |
| 2.4     | Rejection                                       | 4    |
|         |                                                 |      |
|         | n III                                           |      |
|         | Performance Requirements and Compliance Testing |      |
| 3.1     | Conditioning Test                               | 5    |
|         | Figure 1                                        | 6    |
|         | Temperature Control Test                        |      |
|         | Hot Water Shut-Off Test                         |      |
| 3.4     | Maximum Outlet Temperature Test                 | 8    |
|         | Cold Water Shut-Off Test                        |      |
| 3.6     | Cross Flow Test                                 | 8    |
| 3.7     | Hydrostatic Pressure Test                       | 9    |
| Section | n IV                                            | . 10 |
|         | Detailed Requirements                           |      |
|         | Installation and Maintenance Instructions       |      |
|         | Identification and Markings                     |      |
|         |                                                 |      |
|         | n V                                             |      |
| 5 ()    | Definitions                                     | - 11 |

# Temperature Actuated Mixing Valves for Plumbed Emergency Equipment

#### Section I

#### 1.0 General

#### 1.1 Application

Temperature Actuated Mixing Valves for Plumbed Emergency Equipment (herein referred to as the "device"), including eyewash, eye/face wash, drench showers and combination units, are intended to be installed in systems that comply with ANSI Z358.1.

#### 1.2 Scope

#### 1.2.1 Description

These devices shall consist of a hot water inlet connection, a cold water inlet connection, a mixed water outlet connection, a temperature controlling element and a means for adjusting the mixed water outlet temperature while in service. The device shall also have a means to limit the maximum outlet temperature under normal operating conditions. Provisions shall be made so that the temperature cannot be inadvertently adjusted.

#### 1.2.2 Connections

Pipe threads and other connections shall conform to applicable standards.

- **1.2.2.1** Tapered pipe threads shall comply with ASME B1.20.1.
- 1.2.2.2 Dry seal pipe threads shall comply with ASME B1.20.3.
- 1.2.2.3 Compression assemblies shall comply with SAE J 512.
- 1.2.2.4 Soldered connections shall comply with ASME B16.18 or ASME B16.22.
- **1.2.2.5** Push fit connections shall comply with ASSE 1061.

#### 1.2.3 Minimum Flow

Devices covered by this standard are for plumbed emergency equipment with a minimum flow rate of 1.5 GPM (5.7 L/m).

#### 1.2.4 Maximum Working Pressure

The device shall be designed to function at a working pressure of 125.0 psi (861.9 kPa) or greater.

#### 1.2.5 Temperature Range

#### 1.2.5.1 Inlet Water Temperature Range

The hot water inlet temperature range shall be 120.0 °F to 180.0 °F (48.9 °C to 82.2 °C) and the cold water inlet temperature range shall be 40.0 °F to 70.0 °F (4.4 °C to 21.1 °C). The cold water supply shall be at least 10.0 °F (5.5 °C) lower than the outlet water temperature setting.