ASSE International

Performance Requirements for

Water Heaters for Emergency Equipment

An American National Standard
General Information

Neither this standard, nor any portion thereof, may be reproduced without the written consent of ASSE International.

No product may be said to be listed by ASSE unless the manufacturer has applied to ASSE International, had its product tested by an official ASSE recognized independent laboratory according to the applicable standard, passed the tests, and had its documentation reviewed and approved by the consensus ASSE Seal Control Board. Having completed the aforementioned, the manufacturer may display the ASSE Seal on the product.

Instructions for receiving the authorization to display the seal are available from the ASSE International office. Organizations wishing to adopt or list any ASSE standard should print the ASSE standard number on the cover page first in equal or larger type to that of the adopting or listing organization.
Foreword

This foreword shall not be considered a part of the standard; however, it is offered to provide background information.

ASSE standards are developed in the interest of consumer safety. ASSE International considers product performance standards to be of great value in the development of improved plumbing systems.

The working group that developed this standard was set up within the framework of the Product Standards Committee of ASSE International.

Recognition is made of the time volunteered by members of this working group and of the support of manufacturers who also participated in meetings for this standard.

This standard does not imply ASSE International’s endorsement of a product which conforms to these requirements.

Compliance with this standard does not imply acceptance by any code body.

It is recommended that these water heaters be installed consistent with local codes by qualified and trained professionals.

This standard was promulgated in accordance with ASSE’s procedures accredited by the American National Standards Institute (ANSI).
## 2018 Product Standards Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tsan-Liang Su, PhD</strong>, Chairperson</td>
<td>Stevens Institute of Technology, Hoboken, NJ</td>
</tr>
<tr>
<td><strong>William Briggs, Jr.</strong></td>
<td>JB&amp;B, New York, NY</td>
</tr>
<tr>
<td><strong>Terry Burger</strong></td>
<td>NSF International, Ypsilanti, MI</td>
</tr>
<tr>
<td><strong>William Chapin</strong></td>
<td>Professional Code Consulting, LLC, Cullman, AL</td>
</tr>
<tr>
<td><strong>Mark E. Fish</strong></td>
<td>Zurn Industries, LLC, Cary, NC</td>
</tr>
<tr>
<td><strong>Ron George</strong></td>
<td>Plumb-Tech Design &amp; Consulting, Newport, MI</td>
</tr>
<tr>
<td><strong>Daniel Gleiberman</strong></td>
<td>Sloan, Los Angeles, CA</td>
</tr>
<tr>
<td><strong>Brandon Gunnell</strong></td>
<td>Precision Plumbing Products, Portland, OR</td>
</tr>
<tr>
<td><strong>Chris Haldiman</strong></td>
<td>Watts Water Technologies, Springfield, MO</td>
</tr>
<tr>
<td><strong>John F. Higdon, P.E.</strong></td>
<td>Apollo Valves / Conbraco Industries, Inc., Matthews, NC</td>
</tr>
<tr>
<td><strong>Conrad L. Jahrling</strong></td>
<td>(non-voting), ASSE International, Chicago, IL</td>
</tr>
<tr>
<td><strong>Jim Kendzel</strong></td>
<td>American Supply Association, Chicago, IL</td>
</tr>
<tr>
<td><strong>Peter Marzec</strong></td>
<td>United Association of Plumbers and Pipefitters, Pearl River, NY</td>
</tr>
<tr>
<td><strong>Thomas Pitcherello</strong></td>
<td>State of New Jersey, Bordentown, NJ</td>
</tr>
<tr>
<td><strong>Daniel Rademacher</strong></td>
<td>Plumbing Code and Design Consulting, Butte, MT</td>
</tr>
<tr>
<td><strong>Shabbir Rawalpindiwala</strong></td>
<td>Kohler Company, Kohler, WI</td>
</tr>
<tr>
<td><strong>Billy Smith</strong></td>
<td>American Society of Plumbing Engineers (ASPE), Montgomery, AL</td>
</tr>
</tbody>
</table>
ASSE Water Heater Working Group

Julius Ballanco, chairperson
JB Engineering & Code Consulting P.C.
Munster, IN

Gary Klein, chairperson
Gary Klein & Associates, Inc.
Rancho Cordova, CA

Andrew Bonlender
Menomonee Falls, WI

Peter Bouchard
Watts Water Technologies
North Andover, MA

William Chapin
Professional Code Consulting, LLC
Cullman, AL

Rick Cota
Leonard Valve
Cranston, RI

Kathy Daudish
Eemax, Inc.
Waterbury, CT

Fernando Fernandez
Toto USA, Inc.
Ontario, CA

Kevin Freidt
Caleffi, North America
Milwaukee, WI

Ron George
Plumb-Tech Design & Consulting Services, LLC
Newport, MI

Daniel Gleiberman
Sloan
Los Angeles, CA

Greg Goodson
Apollo Valves/Conbraco Industries, Inc
Pageland, SC

Steven Gregory
Vernet SAS
New Palestine, IN

Roger Griffith
Griffith Engineering
Jefferson City, TN

Misty Guard
Bradley Corporation
Menomonee Falls, WI

Chris Hayden
Eemax, Inc.
Waterbury, CT

Chris Haldiman
Watts Water Technologies
Springfield, MO

Larry Himmelblau
Chicago Faucet Company
Des Plaines, IL

Conrad L. Jahrling
(non-voting)
ASSE International
Chicago, IL

Eric Jurczyszak
Eemax, Inc.
Waterbury, CT

Matt Lunn
Lawler Manufacturing
Indianapolis, IN

Gabriel Mihu
Eemax, Inc.
Waterbury, CT

Mannan Mohammed
Reliance Worldwide Corporation
Vaughan, ON, Canada

Mike Schreiner
Caleffi, North America
Milwaukee, WI

Timothy Schroeder
Rada N.A., A Kohler Company
Belgium, WI

David Seitz
Seisco
San Antonio, TX

Nick Siler
Bradley Corporation
Menomonee Falls, WI

Kunal Shah
Aerco
Blauvelt, NY

Dan Snyder
A.O. Smith Corporation
Johnson City, TN

Eric Truskoski
Bradford White
Middleville, MI

Cameron West
Lawler Manufacturing
Indianapolis, IN
# Table of Contents

<table>
<thead>
<tr>
<th>Section I</th>
<th></th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Application</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Scope</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Reference Documents</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section II</th>
<th></th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Test Specimens and Test Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Samples Tested</td>
<td>3</td>
</tr>
<tr>
<td>2.2</td>
<td>Drawings</td>
<td>3</td>
</tr>
<tr>
<td>2.3</td>
<td>Rejection</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section III</th>
<th></th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>Performance Requirements and Compliance Testing</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>Maximum Flow Test</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Figure 1</td>
<td>4</td>
</tr>
<tr>
<td>3.2</td>
<td>Water Heater Temperature Test</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Figure 2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Table 1</td>
<td>5</td>
</tr>
<tr>
<td>3.3</td>
<td>Water Heater Temperature Test with Varying Inlet Water Temperature</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section IV</th>
<th></th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>Detailed Requirements</td>
<td>7</td>
</tr>
<tr>
<td>4.1</td>
<td>Installation and Maintenance Instructions</td>
<td>7</td>
</tr>
<tr>
<td>4.2</td>
<td>Identification and Markings</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section V</th>
<th></th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>Definitions</td>
<td>8</td>
</tr>
</tbody>
</table>

| Annex A     |                                                                 | 9 |
Performance Requirements for Water Heaters for Emergency Equipment

Section I

1.0 General

1.1 Application
This standard is for water heaters with precise setpoint controls under varying flow conditions.

1.2 Scope
This standard is for water heaters supplying tepid water to emergency equipment, including eyewash, eye/face wash, emergency showers, and combination units. These water heaters heat the cold water supply to an acceptable tepid temperature within the intended range listed in ISEA Z358.1.

1.2.1 Description
The water heaters shall consist of a cold water inlet connection, a means of heating the water and controlling the discharge temperature, and an outlet connection to supply tepid water to the emergency equipment. The water heater shall also have a means to limit the maximum outlet temperature under normal operating conditions. Provisions shall be made so that the temperature setting of the water heater cannot be inadvertently adjusted.

1.2.2 Maximum Working Pressure
The water heater shall be designed to function at an upper limit working pressure of 100.0 psi (690 kPa) at minimum.

1.2.3 Inlet Temperature Range
The water heater shall be designed for a cold water inlet temperature range that includes 40.0 °F to 70.0 °F (4.4 °C to 21.1 °C).

1.2.4 Outlet Temperature Range
The water heater shall be capable of supplying the emergency equipment with a supply of water within the temperature range of 65.0 °F to 95.0 °F (18.3 °C to 35.0 °C) under normal operating conditions as defined by sections 1.2.2 and 1.2.3.

1.2.5 Minimum Flow
Note per ISEA Z358.1: Water heaters covered by this standard for eyewashes shall operate at a minimum flow rate of 1.5 GPM (5.7 L/min). Water heaters covered by this standard for eye/face washes or combination units shall operate at a minimum flow rate of 3 GPM (11.4 L/min). Water heaters covered by this standard serving only emergency showers shall operate at a minimum flow rate of 20 GPM (75.7 L/min).