Accredited Standards Committee Z244

Control of Hazardous Energy – Lockout/Tagout And Alternative Methods,
ANSI/ASSE Z244.1-2003

American National Standard For

Approval Date - July 29, 2003
Publication Date – April 14, 2004
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>vi</td>
</tr>
<tr>
<td>History</td>
<td>vi</td>
</tr>
<tr>
<td>Need for a Standard</td>
<td>vi</td>
</tr>
<tr>
<td>Current Status</td>
<td>vii</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Scope, purpose and application</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Purpose</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Application</td>
<td>2</td>
</tr>
<tr>
<td>Definitions</td>
<td>2</td>
</tr>
<tr>
<td>Responsibilities</td>
<td>4</td>
</tr>
<tr>
<td>3.1 Manufacturers, integrators, modifiers and remanufacturers</td>
<td>4</td>
</tr>
<tr>
<td>3.2 Users</td>
<td>4</td>
</tr>
<tr>
<td>3.3 Authorized individuals</td>
<td>4</td>
</tr>
<tr>
<td>Design</td>
<td>4</td>
</tr>
<tr>
<td>4.1 Manufacturer, integrator, modifier, and remanufacturer responsibilities</td>
<td>4</td>
</tr>
<tr>
<td>4.1.1 Exposure minimization</td>
<td>4</td>
</tr>
<tr>
<td>4.1.2 Partial energization</td>
<td>4</td>
</tr>
<tr>
<td>4.2 Energy isolating devices</td>
<td>4</td>
</tr>
<tr>
<td>4.2.1 Location</td>
<td>5</td>
</tr>
<tr>
<td>4.2.2 Identification</td>
<td>5</td>
</tr>
<tr>
<td>4.2.3 Capability</td>
<td>5</td>
</tr>
<tr>
<td>4.2.4 Suitability</td>
<td>5</td>
</tr>
<tr>
<td>4.3 Special tools or devices</td>
<td>5</td>
</tr>
<tr>
<td>4.4 Warnings and special instructions</td>
<td>5</td>
</tr>
<tr>
<td>4.5 Component isolation</td>
<td>6</td>
</tr>
<tr>
<td>4.6 Documentation requirements</td>
<td>6</td>
</tr>
<tr>
<td>4.7 Stored and residual energy</td>
<td>6</td>
</tr>
<tr>
<td>4.8 Control integration</td>
<td>6</td>
</tr>
<tr>
<td>4.9 Physical safeguards</td>
<td>7</td>
</tr>
<tr>
<td>Hazardous energy control program</td>
<td>7</td>
</tr>
<tr>
<td>5.1 User responsibilities</td>
<td>7</td>
</tr>
<tr>
<td>5.1.1 Equipment</td>
<td>7</td>
</tr>
<tr>
<td>5.1.2 Program</td>
<td>7</td>
</tr>
<tr>
<td>5.2 Methods of control</td>
<td>7</td>
</tr>
<tr>
<td>5.3 Lockout/tagout program</td>
<td>8</td>
</tr>
</tbody>
</table>
5.3.1 General requirements for lockout/tagout

5.3.1.1 Hazardous energy control procedures

5.3.1.2 Procedure elements

5.3.1.3 Procedure management

5.3.1.3.1 Format

5.3.1.3.2 Validation

5.3.1.3.3 Approval

5.3.1.3.4 Document maintenance

5.3.1.4 Protective materials and hardware

5.3.1.5 Energy isolating device identification

5.3.1.6 Energy isolation

5.3.2 Elements of energy control

5.3.2.1 Preparation for shutdown

5.3.2.2 Notification of personnel

5.3.2.3 Machine, equipment or process shutdown

5.3.2.4 Machine, equipment, or process isolation

5.3.2.5 Lockout or tagout device application

5.3.2.6 Partial de-energization

5.3.2.7 Controlling stored energy

5.3.2.8 Verification of isolation

5.3.2.9 Return to service

5.3.3 Provisions for energy control interruption

5.3.4 Procedures for user-directed lockout/tagout device removal

5.3.5 Outside service or contractor personnel

5.3.5.1 Apprising of Hazard

5.3.5.2 Program coordination

5.3.5.3 Communications

5.3.5.4 Temporary personnel

5.3.6 Group lockout/tagout

5.3.7 Complex group lockout/tagout

5.3.8 Shift or personnel changes

5.3.9 Remote or noncontiguous locations

5.3.10 Special applications

5.3.10.1 Freeze plug technology

5.3.10.2 Remote low voltage lockout system

5.4 Alternative methods

5.4.1 Risk assessment
5.4.2 Hierarchy of alternative control implementation...17
5.4.3 Engineered safeguards ...17
 5.4.3.1 Exclusive personal control...18
 5.4.3.2 Control circuit integrity ...18
 5.4.3.3 Area scanners..18
 5.4.3.4 Guards ..19
 5.4.3.5 Hold-to-run devices ..19
 5.4.3.6 Light curtains ...19
 5.4.3.7 Pressure mats...19
 5.4.3.8 Safety-rated switches ..19
 5.4.3.9 Stop devices ...19
 5.4.3.10 Trapped key devices ..19
5.4.4 Warning and alerting techniques..19
 5.4.4.1 Attendant ..19
 5.4.4.2 Automated warning systems ..20
 5.4.4.3 Barricades...20
 5.4.4.4 Warning signs and tags ...20
5.4.5 Administrative controls (safe work procedures and practices) ..20
 5.4.5.1 Apparel ...20
 5.4.5.2 Illumination..20
 5.4.5.3 Preparation for work ..20
5.4.6 Training...20
5.4.7 Personal protective equipment..20
5.5 Communication and training...20
 5.5.1 Communication ...20
 5.5.2 Training..21
 5.5.3 Additional training..21
 5.5.4 Assessment of training..21
5.6 Program review...22
 5.6.1 Program monitoring and measurement...22
 5.6.2 Application of specific procedures...22
 5.6.3 Performance feedback..22
5.7 Annexes
 A Risk Assessment and Risk Reduction..23
B (1) Sample Lockout/Tagout Program and Policy ... 28
B (2) General Lockout/Tagout Procedure ... 33
C Sample of an Energy Control Procedure ... 35
D Sample of a Lockout/Tagout Placard .. 38
E Group Lockout/Tagout .. 40
F Alternative Method for Freeze Plug Applications ... 46
G Remote Low Voltage Lockout System ... 47
H Alternative Method for the Printing Industry ... 48
I Alternative Method for the Plastics Industry .. 49
J Alternative Method for Robotic Applications .. 51
K Alternative Methods Involving Trapped Key Interlock Systems 52
L Sample of a Lockout/Tagout Application Inspection Form .. 54
M Bibliography ... 56
Foreword

(This Foreword is not part of American National Standard Z244.1-2003)

History

In March 1973, the Accredited Standards Committee Z244 held its first organizational meeting in New York to develop a standard on lockout/tagout. The National Safety Council functioned as the secretariat and provided a draft document "Guidelines for a Lockout Program" dated November 1971 that was used as a reference for the committee's deliberations. By the end of 1975, the standard development work was complete and public review and balloting was finished. However, various administrative and procedural problems precluded the standard from being officially released. In March 1982, American National Standard for Personnel Protection - Lockout/Tagout of Energy Sources - Minimum Safety Requirements Z244.1 was finally approved and published.

In 1987, the standard was re-affirmed without any changes in content. In April 1988, the Occupational Safety and Health Administration (OSHA) released a proposed rule "The Control of Hazardous Energy Sources (Lockout/Tagout) 29CFR1910.147 which used ANSI Z244.1 as a principal reference source. The Committee believed no consequential action should be taken on the Z244.1 Standard while federal rulemaking was underway. In September 1989, OSHA promulgated its final rule 29CFR1910.147, The Control Of Hazardous Energy Sources (lockout/tagout). Again in 1992, the ANSI standard was re-affirmed without change.

Need for a Standard

A wealth of casualty data exists in the private, public, and governmental sectors related to the unexpected release of hazardous energy. In fact, the issue is of global concern since all of the major industrialized countries of the world are actively addressing the problem in various ways. The U.S. Occupational Safety and Health Administration provided persuasive injury data in its justification for a lockout/tagout standard for general industry.

In spite of substantial efforts by employers, unions, trade associations and government during the past 25 years, the annual toll of injury and death related to hazardous energy release incidents remains unacceptable. We now know that all forms of energy must be addressed; that operational personnel are injured as often as maintenance workers; that often thermal, and gravitational forces and trapped materials under pressure are overlooked; that complex equipment and processes frequently demand unique approaches to energy isolation or control; and that employers need to commit resources and substantial effort in planning, training, procedure development, and infrastructure before lockout/tagout application ever occurs.

The rapid growth of technology continues to require different methods and techniques for safeguarding workers from the unexpected release of hazardous energy. Every business sector is actively changing the way traditional work is done, which then requires employers to develop new equally effective responses for hazardous energy control. Protective standards need to be continually improved to provide guidance for current conditions as well as evolving technical developments.

Standard Perspective

The content of this standard was approached from a business and industry perspective. However, the principles, methods and guidance are applicable to a variety of other settings and circumstances where unexpected release of hazardous energy can occur. It is recommended that the procedures, techniques, methods and design guidance detailed herein will be utilized by all those whose activities fall within the scope and purpose of this standard.
The Standards Committee and the Secretariat have made a concerted effort to produce a standard that represents the "best practice" regarding the control of hazardous energy. All circumstances or situations where personnel are exposed to unexpected energy release may not have been anticipated and adequately addressed with respect to the standard's content. New developments are to be expected, and revisions of the standard will be necessary as the state of the art progresses and further experience is gained. However, uniform requirements are needed and the standard in its present form provides performance requirements that are necessary when developing and implementing a system for protecting personnel from hazardous energy.

Current Status

During 1997, the Committee was reconstituted and voted to revise the existing standard after over 20 years without change. Consequential meetings began in 1998 and the revision process began with writing task groups being formed and continued through 2003 when this document was produced. The title of the standard was modified to recognize the broader universe of hazardous energy control. The standard now more effectively addresses the need for greater flexibility through the use of alternative methods based on risk assessment and application of the hazard control hierarchy. In addition, the standard emphasizes management's responsibility for protection of personnel against the release of hazardous energy.

The standard was processed and approved for submittal to ANSI by the Accredited Standards Committee (Z244) on Control of Hazardous Energy-Lockout/Tagout and Alternative Methods for Personnel Protection. The standard was approved by ANSI on July 29, 2003 with a publication day of April 14, 2004. Approval of the standard does not necessarily imply that all committee members voted affirmatively.

The National Safety Council (NSC) agreed to transfer the Z244.1 Standard and Secretariat responsibilities to the ASSE during the first quarter of 2004 after over thirty years of dedicated service.

Conformance language in the standard consists of the words "shall" and "should". In this standard, the word "shall" is intended to be prescriptive, specifying mandatory requirements for compliance with the standard. The word "should" specifies nonmandatory recommendations and good practices that have been found to be helpful.

Suggestions for improvements of this standard are welcome. They should be sent to: American Society of Safety Engineers (ASSE), 1800 East Oakton Street, Des Plaines, IL 60018 c/o Z244 Secretariat, Practices and Standards.
At the time of the standard's approval the Z244 committee had the following members:

Edward V. Grund, Chairperson
Jeff Fryman, Vice Chairperson
Timothy R. Fisher, Secretary
Patrick J. Arkins, Assistant Secretary
Judy Bernardi, National Safety Council
(Served as Secretary for the NSC during development of the standard)

<table>
<thead>
<tr>
<th>Organization Represented</th>
<th>Name of Representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum Association</td>
<td>Paul Woerz</td>
</tr>
<tr>
<td></td>
<td>Mark Eliopulos (alt.)</td>
</tr>
<tr>
<td>American Chemistry Council</td>
<td>Paul Dobrowsky</td>
</tr>
<tr>
<td>American Petroleum Institute</td>
<td>Ken Oxman</td>
</tr>
<tr>
<td>American Society of Safety Engineers</td>
<td>David A. Dodge</td>
</tr>
<tr>
<td>Association for Manufacturing Technology (AMT)</td>
<td>David Felinski</td>
</tr>
<tr>
<td>The Budd Company</td>
<td>Charles R. Payne</td>
</tr>
<tr>
<td></td>
<td>Gary Higbee (alt.)</td>
</tr>
<tr>
<td>Campus Safety, Health, & Environmental Management Association</td>
<td>Michael Hartz</td>
</tr>
<tr>
<td>Castell Interlocks</td>
<td>Dan Kelly</td>
</tr>
<tr>
<td></td>
<td>Mark Dornoff</td>
</tr>
<tr>
<td></td>
<td>David Church (alt.)</td>
</tr>
<tr>
<td>DaimlerChrysler Corporation</td>
<td>Ronald R. Walters</td>
</tr>
<tr>
<td>Edison Electric Institute</td>
<td>Charles J. Kelly</td>
</tr>
<tr>
<td></td>
<td>Gary N. Miller (alt.)</td>
</tr>
<tr>
<td>Honda of America Manufacturing, Inc.</td>
<td>Joe Cicero</td>
</tr>
<tr>
<td>ID Group</td>
<td>Edward V. Grund</td>
</tr>
<tr>
<td></td>
<td>Richard Bouchard (alt.)</td>
</tr>
<tr>
<td>Institute of Electrical & Electronics Engineers</td>
<td>James H. Beall</td>
</tr>
<tr>
<td></td>
<td>Sue Vogel (alt.)</td>
</tr>
<tr>
<td>International Brotherhood of Electrical Workers</td>
<td>Jim Tomaseski</td>
</tr>
<tr>
<td>International Union, UAW</td>
<td>Tim McClain</td>
</tr>
<tr>
<td></td>
<td>Jim Howe (alt.)</td>
</tr>
<tr>
<td>Johnson & Johnson</td>
<td>Thomas W. Piantek</td>
</tr>
</tbody>
</table>
NPES; The Association for Suppliers of Printing, Publishing, & Converting Technologies
Precision Metal Forming Association
Robotic Industries Association
Ross Controls
Sauer-Danfoss, Inc.
Scientific Technologies, Inc.
Seyfarth, Shaw, Fairweather & Geraldson
Society of Plastics Industry
Toyota Motor Manufacturing NA, Inc.
U.S. Department of Labor - OSHA
Utility Workers Union of America
Weyerhaeuser

Individual Experts
George V. Karosas

Contributing Organizational Observers
American Foundry Society
Osborne Manufacturing, Inc.
National Fluid Power Association
Standard Requirements

0 Introduction
This standard provides guidance regarding:
- responsibilities of the principal parties involved in hazardous energy control (Clause 3);
- design issues that influence the effective application of control methodology (Clause 4);
- hazardous energy control program elements necessary for employee protection (5.3);
- alternative methods development for tasks that are routine, repetitive, and integral to the production process, or where traditional lockout/tagout prohibits the completion of those tasks (5.4);
- special applications where traditional methods of hazardous energy control are inappropriate or impractical (5.3.10);
- communication and training requirements for involved personnel (5.5); and
- management review of the total hazardous energy control process to ensure its functioning effectiveness (5.6).

The standard provides for decision-making flexibility regarding hazardous energy control methodology. Alternative methods, when used, are based upon risk assessment and application of the classic hazard control hierarchy (5.4.2). However, lockout/tagout continues to be emphasized as the primary hazardous energy control approach.

1 Scope, purpose and application

1.1 Scope
This standard establishes requirements for the control of hazardous energy associated with machines, equipment, or processes that could cause injury to personnel.

1.2 Purpose
The purpose of this standard is to establish requirements and performance objectives for procedures, techniques, designs and methods that protect personnel where injury can occur as a result of the unexpected release of hazardous energy. Unexpected release of hazardous energy can include any unintended motion, energization, start-up or release of stored energy, deliberate or otherwise, from the perspective of the person(s) at risk.

Lockout/tagout is the primary method of hazardous energy control. When the tasks specified in 1.3 are routine, repetitive, and integral to the production process, or traditional lockout/tagout prohibits the completion of those tasks, alternative methods of control that are based on risk assessment (5.4.1) and that provide effective personal protection shall be used.

NOTE - Tasks that are routine, repetitive and integral to production generally exhibit most of the following characteristics:
- Short in duration
- Relatively minor in nature
- Occur frequently during the shift, day or week
- Usually performed by operators, set-up, service or maintenance personnel
- Do not involve extensive disassembly