The information and materials contained in this publication have been developed from sources believed to be reliable. However, the American Society of Safety Engineers (ASSE) as secretariat of the ANSI accredited Z359 Committee or individual committee members accept no legal responsibility for the correctness or completeness of this material or its application to specific factual situations. By publication of this standard, ASSE or the Z359 Committee does not ensure that adherence to these recommendations will protect the safety or health of any persons, or preserve property.
American National Standard

The Fall Protection Code

Secretariat

American Society of Safety Engineers
520 N. Northwest Highway
Park Ridge, Illinois 60068

Approved August 15, 2016

Effective August 14, 2017

American National Standards Institute, Inc.
Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer. Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution. The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he/she has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards. The American National Standards Institute does not develop standards and will in no circumstance give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretation should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

Caution Notice: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published November 2016 by

American Society of Safety Engineers
520 N. Northwest Highway
Park Ridge, Illinois 60068
(847) 699-2929 • www.asse.org

Copyright ©2016 by American Society of Safety Engineers
All Rights Reserved.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Printed in the United States of America
Foreword (This Foreword is not a part of American National Standard Z359.1-2016)

The first edition of ANSI/ASSE Z359.1, published in 1992, was the first American National Standard for personal fall arrest systems in non-construction occupations. It established requirements for performance, design, marking, qualification, instruction, training, inspection, use, maintenance and removal from service of full body harnesses, connectors, lanyards, energy absorbers, anchorage connectors, fall arresters, vertical lifelines and self-retracting lanyards.

This standard was reaffirmed in 1999 and revised in 2007. By the time the next revision appeared in 2007, it was accompanied by new ANSI/ASSE Z359 standards for managed fall protection program elements, positioning and travel restraint systems, and rescue systems. Additionally, the definitions common to all ANSI/ASSE Z359 standards were published in a separate standard. In the years since then, new standards have been developed for the products and systems covered by ANSI/ASSE Z359.1-2007, and the requirements of that standard have been superseded. This set of ANSI/ASSE Z359 standards is referred to collectively as the Fall Protection Code.

This edition of ANSI/ASSE Z359.1 therefore is a new standard in regards to technical content, not a simple revision of the requirements in the previous editions. The intent of this standard is to provide a key to understanding and applying the standards within the ANSI/ASSE Z359 Fall Protection Code, as well as a single point of reference to define compliance with the Code. This will allow organizations the ability to identify a single standard when accepting the Code as a single document, ANSI/ASSE Z359.1.

While a majority of the criteria within the product standards for the ANSI/ASSE Z359 Fall Protection Code is prepared to create consistency and minimum requirements for products offered by manufacturers and distributors, there is also a sizeable amount of information that is relevant for the user’s organization. In addition to this standard, ANSI/ASSE Z359.2, Minimum Requirements for a Comprehensive Managed Fall Protection Program, should be the first document that someone within a user’s organization should become familiar with. Also, there is relevant information within the product standards that provides guidance on the use and limitations associated with the specific product category. Manufacturers and distributors are also required to provide this information in the instruction material provided with the product. The ANSI/ASSE Z359 Fall Protection Code now includes all fall protection risks and exposures excluding material handling operations or sports related activities.

The interdependence of the ANSI/ASSE Z359 standards is key to their use as a Fall Protection Code. Although the equipment aspect of fall protection is likely the most visible element, all of the standards must be implemented to create a safe and truly compliant fall protection system and program. For example, training, fall hazard surveys and procedures are critical to safely identifying, evaluating and controlling fall hazards based on the hierarchy of controls. The ANSI/ASSE Z359.2 standard contains these items and should be integral to your overall program. Furthermore, it is becoming more common, and in some instances a requirement, that a qualified person who is commonly an engineer, design the overall system. This act of design includes selecting the system, ensuring strength of the anchorage(s), specifying equipment components, preparing use and rescue procedures, and verifying the implementation of general and system-specific training. Requirements for engineered systems are found in ANSI/ASSE Z359.6.

The standards in the Fall Protection Code are constantly evolving, and are revised on a regular schedule in conformity to ANSI requirements. ANSI/ASSE Z359.1 will be kept up-to-date as new standards and revisions are developed and published. The use of national consensus standards is voluntary. Please note that the revised Code requires that all products meet the current version of the applicable standard when purchased. Product in use when new standards or revisions to existing standards become effective can continue to be used until they are removed from service.
The ANSI/ASSE Z359 Committee solicits public input that may suggest the need for revisions to this standard. Such input should be sent to the Secretariat, ASC Z359, American Society of Safety Engineers, 520 N. Northwest Highway, Park Ridge, IL 60068.

This standard was developed and approved for submittal to ANSI by the American National Standards Committee on Standards for Fall Protection, ANSI/ASSE Z359. Committee approval of the standard does not necessarily imply that all committee members voted for its approval. At the time it approved this standard, the ANSI/ASSE Z359 Committee had the following members:

Randall Wingfield, Chair
Thomas Kramer, P.E., CSP, Vice Chair
Timothy R. Fisher, CSP, CHMM, ARM, CPEA, Secretary
Ovidiu Munteanu, Assistant Secretary
Jennie Dalesandro, Administrative Technical Support

Organization Represented

<table>
<thead>
<tr>
<th>Name of Representative</th>
<th>Name of Representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M</td>
<td>Raymond Mann</td>
</tr>
<tr>
<td>American Airlines</td>
<td>Judd Perner</td>
</tr>
<tr>
<td>American Society of Safety Engineers</td>
<td>Len Bradley</td>
</tr>
<tr>
<td>Bashlin Industries, Inc.</td>
<td>Jubal D. Hamernik, Ph.D., P.E.</td>
</tr>
<tr>
<td>Boeing Company</td>
<td>John Stephen Frost, CSP</td>
</tr>
<tr>
<td>Buckingham Mfg. Co., Inc.</td>
<td>Bradley S. McGill</td>
</tr>
<tr>
<td>Chevron</td>
<td>Chuck Orebaugh</td>
</tr>
<tr>
<td>Clear Channel Outdoor</td>
<td>Joey R. Junio, P.E.</td>
</tr>
<tr>
<td>ClimbTech LLC</td>
<td>James Rullo</td>
</tr>
<tr>
<td>Dynamic Industries, Inc.</td>
<td>DeForest Kanfield</td>
</tr>
<tr>
<td>Elk River, Inc.</td>
<td>Craig Berkenmeier, ARM</td>
</tr>
<tr>
<td>Ellis Fall Safety Solutions, LLC</td>
<td>Joshua Ockmond, CSP</td>
</tr>
<tr>
<td>ExxonMobil Corporation</td>
<td>James Rullo</td>
</tr>
<tr>
<td>FallTech</td>
<td>DeForest Canfield</td>
</tr>
<tr>
<td>Flexible Lifeline Systems</td>
<td>Karl Guthrie</td>
</tr>
<tr>
<td>General Motors</td>
<td>Craig Berkenmeier, ARM</td>
</tr>
<tr>
<td>Gorbel Inc.</td>
<td>Eric Patrick</td>
</tr>
<tr>
<td>Gravitec Systems, Inc.</td>
<td>Gary LoPiccolo</td>
</tr>
<tr>
<td>Hartford Steam Boiler Inspection & Insurance Co.</td>
<td>Brandon Muffoletto, CSP</td>
</tr>
<tr>
<td>High Engineering Corp.</td>
<td>Delisa Calhoun</td>
</tr>
<tr>
<td></td>
<td>Erik Arendall</td>
</tr>
<tr>
<td></td>
<td>J. Nigel Ellis, Ph.D., P.E., CSP, CPE</td>
</tr>
<tr>
<td></td>
<td>John T. Whitty, P.E.</td>
</tr>
<tr>
<td></td>
<td>Freddie Johnson</td>
</tr>
<tr>
<td></td>
<td>Dustin Hawkins</td>
</tr>
<tr>
<td></td>
<td>Warren Faber</td>
</tr>
<tr>
<td></td>
<td>Hugh Armstrong</td>
</tr>
<tr>
<td></td>
<td>Michael Bailey, P.E.</td>
</tr>
<tr>
<td></td>
<td>Ken Mahnick, P.E.</td>
</tr>
<tr>
<td></td>
<td>Allen Baughman</td>
</tr>
<tr>
<td></td>
<td>Kevin Duhamel</td>
</tr>
<tr>
<td></td>
<td>Randall Wingfield</td>
</tr>
<tr>
<td></td>
<td>Dave Lough</td>
</tr>
<tr>
<td></td>
<td>Timothy Healey</td>
</tr>
<tr>
<td></td>
<td>Jerry Kucharski, CFPS</td>
</tr>
<tr>
<td></td>
<td>William R. Parsons, P.Eng.</td>
</tr>
<tr>
<td></td>
<td>Greg Small, P.Eng., M.Eng.</td>
</tr>
</tbody>
</table>
Honeywell Safety Products
Indianapolis Power and Light
INSPEC International Ltd.
ISEA – International Safety Equipment Association
Lawrence Livermore National Security
Liberty Mutual Group
Lighthouse Safety LLC
LJB Inc.
Martin/Martin Consulting Engineers
Monsanto
MSA
Murdock Webbing Co. Inc.
National Association of Tower Erectors
Pamela R. Huck, Inc.
PenSafe
Petzl America
Pigeon Mountain Industries, Inc.
Reliance Industries, LLC
Rigid Lifelines
Rooftop Anchor, Inc.
Safety Connection, Inc.
Safety Equipment Institute
Safety Through Engineering, Inc. (dba STE, Inc.)
Shell Exploration & Production Co.
Skylotec North America, LP
Southern Weaving Co.

Bradley Rohlf
Chris Huber
David Baldwin
David H. Pate, CUSA
Paul Clarke, CEng, MIMechE
Andrew Diamond, MInstP, BSc (Hons)
Dan Shipp
Eric Miller
Louis Renner, CSP
Steve McConnell, CSP, CIH
Cal Sparks
Matthew Zaffini
John Corriveau
Mark Benes
Thomas Kramer, P.E., CSP
Rupert Noton, CEng, MIStructE
Andrew Emmons, P.E.
Matthew Schneider, P.E.
Robert Kling, P.E., CSP
Adam Chapin
Rob Willis
Tim Bissett
Robert Golz
Greg Pilgrim
Gordon Lyman
Don Doty
Pamela Huck, CSP
Keith Smith
Rick Vance
Jeremiah Wangsgard
Jeff Bowles
Kim Hunter
Dan Henn
W. Joe Shaw
Arnie Galpin, P.E.
John Kemp
Kynan Wynne
Tyson Munford, P.E.
Clint Honeycutt, Sr.
Janice Honeycutt
Steve Sanders
Michael C. Wright, P.E., CPE, CSP
Mark Williams
Edward Grosse
Gregory Byers
Mark Conover
Michael Masterson, Jr.
Andrew Broadway
Curtiss Burdette
Sparkling Clean Window Company & Surface Solutions
SPRAT – Society of Professional Rope Access Technicians
Sturges Manufacturing Co., Inc.
Surewerx/Peakworks
Tractel Inc.
Transport Workers Union
Travelers
Tritech Fall Protection Systems, Inc.
U.S. Air Force Safety Center
U.S. Bureau of Reclamation
U.S. Department of Interior – BSEE
U.S. Department of the Navy
UL LLC
United Auto Workers
Vertical Access LLC
Walt Disney Parks & Resorts
Western Area Power Administration
WJE

Subgroup Z359.1 had the following members:

Thomas Kramer, P.E., CSP, Chair
Kevin Goodwin, CSP
Marc Harkins
Dan Henn
Rupert Noton, CEng, MIstructE
Judd Perner
Dan Shipp
Cal Sparks
Beverly Wooten Stutts

Sam Terry
Art Schneider
Loui McCurley
Cedric Smith
Richard Griffith
Tyler Griffith
Tim Accursi
Kenneth Lemke
Doug Knapp
Catalin Anesia
James Mark
Scott H. Richert, CSP, ARM, ALCM
Chris Moemke, EIT
John Seto, P.E
Mark S. Kantorowicz
Robert Baker
Shawn Smith, CSP
Shaun Reed
John M. Cushing, Jr.
Simon Baughman
Basil Tominna, P.E.
Shawn Smith, MEng, CSP
Beverly Wooten Stutts
Matthew S. Upton, OHST
Kelly Streeter, P.E.
Keith Luscinski
Ken Young, P.E.
Ian Bevan
Patrick T. Nies
Will Schnyer
Daniel Gach, AIA, NCARB
Jason Kamman, CSP, CHST
Contents

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scope, Purpose, Application, Exceptions and Interpretations</td>
<td>8</td>
</tr>
<tr>
<td>1.1 Scope</td>
<td>8</td>
</tr>
<tr>
<td>1.2 Purpose and Application</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Exceptions</td>
<td>9</td>
</tr>
<tr>
<td>1.4 Interpretations</td>
<td>9</td>
</tr>
<tr>
<td>2. Definitions</td>
<td>9</td>
</tr>
<tr>
<td>3. Compliance</td>
<td>9</td>
</tr>
<tr>
<td>4. Required Sections of ANSI/ASSE Z359 Standards</td>
<td>12</td>
</tr>
<tr>
<td>Appendix A</td>
<td>14</td>
</tr>
</tbody>
</table>
STANDARD REQUIREMENTS

1. SCOPE, PURPOSE, APPLICATION, EXCEPTIONS AND INTERPRETATIONS

1.1 Scope.

1.1.1 The Fall Protection Code is a set of standards that covers program management; system design; training; qualification and testing; equipment, component and system specifications for the processes used to protect workers at height in a managed fall protection program. This standard identifies those standards and establishes their role in the Code and their interdependence.

1.1.2 The Fall Protection Code encompasses standards for personal fall protection systems that incorporate a full body harness, intended to protect the user against falls from a height either by preventing or arresting free falls. In general, systems that prevent a free fall are preferable to systems that arrest a free fall. The types of systems that shall be addressed by this Fall Protection Code include:

a) Fall restraint systems
b) Work positioning systems
c) Rope access systems
d) Fall arrest systems
e) Rescue systems

1.2 Purpose and Application.

1.2.1 This standard specifies minimum requirements for the processes, systems, sub-systems and components used in a managed fall protection program that meets all of the requirements of the ANSI/ASSE Z359 Fall Protection Code.

1.2.2 Before any product shall bear an ANSI/ASSE Z359 marking or be represented in any way as being in compliance with any ANSI/ASSE Z359 standard, the requirements of the associated product standard shall be met. ANSI/ASSE Z359.1 is not a product standard and therefore, no product shall be labeled as meeting ANSI/ASSE Z359.1 after the effective date of this standard.

EXPLANATORY INFORMATION
(Not part of American National Standard Z359.1)

E1.2.2 The effective date of the ANSI/ASSE Z359.1-2016 standard is August 14, 2017.