AMERICAN NATIONAL STANDARD

ANSI/ASSE Z359.18-2017
Safety Requirements for Anchorage Connectors for Active Fall Protection Systems

Part of the Fall Protection Code
The information and materials contained in this publication have been developed from sources believed to be reliable. However, the American Society of Safety Engineers (ASSE) as secretariat of the ANSI accredited Z359 Committee or individual committee members accept no legal responsibility for the correctness or completeness of this material or its application to specific factual situations. By publication of this standard, ASSE or the Z359 Committee does not ensure that adherence to these recommendations will protect the safety or health of any persons, or preserve property.
American National Standard

Safety Requirements for Anchorage Connectors for Active Fall Protection Systems

Secretariat

American Society of Safety Engineers
520 N. Northwest Highway
Park Ridge, Illinois 60068

Approved June 2, 2017
Effective August 13, 2017

American National Standards Institute, Inc.
Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer. Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution. The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he/she has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards. The American National Standards Institute does not develop standards and will in no circumstance give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretation should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

Caution Notice: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.
Foreword (This Foreword is not a part of American National Standard Z359.18-2017.)

This is the first edition of ANSI/ASSE Z359.18. It establishes requirements for performance, design, marking, qualification, instruction, training, inspection, use, maintenance and removal from service of anchorage connectors that were formerly part of the ANSI/ASSE Z359.1-2007 standard.

This standard represents a significant step forward in the realm of anchorage connectors.

The ANSI Z359.18 subcommittee focused on two aspects of anchorage connectors when developing this standard – anchorage connectors of questionable strength and clearer instructions to users. As we took these two aspects, we organized them into three specific facets in which the industry could measure our success.

1. Testing requirements
2. Integrity of substrate attachment
3. Instructions for use

The previous standard for anchorage connectors, ANSI/ASSE Z359.1-2007 is considered overly simplistic for these facets. In addition to weakness in these three facets, there was no clear direction with regard to the anchorage in the previous standard. A critical aspect for the performance of anchorage connectors is the interaction between the anchorage connector and the anchorage where it is used. This standard now includes dynamic testing of the anchorage connector installed on substrates that represent the intended installation and use. There is also a requirement related to the ANSI/ASSE Z359.7 standard and the need for a ISO 17025 accredited laboratory. For background, these were not required for anchorage connectors in ANSI/ASSE Z359.1-2007.

For the first facet, this standard tests in a manner that more closely represents actual use of the anchorage connectors. In addition to static and dynamic strength and performance testing, this standard also includes residual strength testing to verify strength after a fall has occurred, and in some cases, serviceability testing to verify that deformable anchorage connectors will not deform under the working loads permitted by the manufacturers. Corrosion testing requirements are included and increased for anchorage connectors that are expected to serve for many years in outdoor settings, such as a Type T anchorage connector for tiebacks.

For the second facet, this standard requires testing of anchorage connectors in a substrate that represents real world applications. This is an area of great concern to the technical committee because even the strongest anchorage connector can fail if it is improperly installed, or installed on structures that have inadequate strength. For this reason, purchasers of equipment certified to this standard should also refer to the ANSI/ASSE Z359.2 and ANSI/ASSE Z359.6 standards for certification of INSTALLED anchorage connectors. The Z359 accredited standards committee expects future revisions of this standard will improve testing of installed anchorage connectors. We anticipate developing more specific fixturing requirements in the future that will further increase assurance to users that Z359 anchorage connectors are fit for service.

The third facet builds on the second requiring clear instructions to reduce the misuse of anchorage connectors. We anticipate future markings and the continuing universal use of smart devices will allow authorized persons, competent persons and other involved parties to have access to instructions and other pertinent information from manufacturers on the proper and improper installations, uses and inspection of their anchorage connectors.

As with any fall protection standard, the ultimate goal is to improve the level of safety experienced by the user. This standard accomplishes this by requiring testing to more accurately represent the intended use of anchorage connectors, and providing clearer user instructions.
Moving forward it is the committee’s hope that this standard will stay abreast of changes and additions to the current suite of anchorage connectors it has been written to address. We believe it provides a framework that will allow changes to validate and qualify anchorage connectors in an ever evolving market. One of the committee’s primary objectives to facilitate this goal was to provide manufacturers a structure that will allow inclusion of new products in a timely fashion and quickly addresses concerns from potential product misuse, the purpose of which is to product that safely meets user needs.

The standards in the Fall Protection Code are constantly evolving, and are revised on a regular schedule in conformity to ANSI requirements.

The Z359 Committee solicits public input that may suggest the need for revisions to this standard. Such input should be sent to the Secretariat, ASC Z359, American Society of Safety Engineers, 520 N. Northwest Highway, Park Ridge, Illinois 60068.

This standard was developed and approved for submittal to ANSI by the American National Standards Committee on Standards for Fall Protection, ANSI/ASSE Z359. Committee approval of the standard does not necessarily imply that all committee members voted for its approval. At the time it approved this standard, the ANSI/ASSE Z359 Committee had the following members:

Randall Wingfield, Chair
Thomas Kramer, P.E., CSP, Vice Chair
Timothy R. Fisher, CSP, CHMM, ARM, CPEA, Secretary
Ovidiu Munteanu, Assistant Secretary
Jennie Dalesandro, Administrative Technical Support

<table>
<thead>
<tr>
<th>Organization Represented</th>
<th>Name of Representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M</td>
<td>Raymond Mann</td>
</tr>
<tr>
<td>American Society of Safety Engineers</td>
<td>Judd Perner</td>
</tr>
<tr>
<td>Bashlin Industries, Inc.</td>
<td>Jubal D. Hamernik, Ph.D., P.E.</td>
</tr>
<tr>
<td>Boeing Company</td>
<td>John Stephen Frost, CSP</td>
</tr>
<tr>
<td>Buckingham Manufacturing Company</td>
<td>Bradley S. McGill</td>
</tr>
<tr>
<td>ClimbTech</td>
<td>Chuck O'Rebaugh</td>
</tr>
<tr>
<td>Elk River, Inc.</td>
<td>Joey R. Junio, P.E.</td>
</tr>
<tr>
<td>Ellis Fall Safety Solutions, LLC</td>
<td>James Rullo</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>DeForest Canfield</td>
</tr>
<tr>
<td>FallTech</td>
<td>Karl Guthrie</td>
</tr>
<tr>
<td>Flexible Lifeline Systems</td>
<td>Daniel Aleksovski</td>
</tr>
<tr>
<td>General Motors</td>
<td>Mark Conover</td>
</tr>
<tr>
<td>Gorbel Inc.</td>
<td>Erik Arendall</td>
</tr>
<tr>
<td>J. Nigel Ellis, Ph.D., P.E., CSP</td>
<td></td>
</tr>
<tr>
<td>John T. Whitty, P.E.</td>
<td>Freddie Johnson</td>
</tr>
<tr>
<td>Zachary Shanklin</td>
<td>Dustin Hawkins</td>
</tr>
<tr>
<td>Hugh Armstrong</td>
<td>Warren Faber</td>
</tr>
<tr>
<td>Michael Bailey, P.E.</td>
<td></td>
</tr>
<tr>
<td>Graham Parr</td>
<td>Allen Baughman</td>
</tr>
<tr>
<td>Ken Mahnick, P.E.</td>
<td>Kevin Duhamel</td>
</tr>
</tbody>
</table>
Gravitec Systems, Inc. Randall Wingfield
Guardian Fall Protection Dave Lough
Hartford Steam Boiler Inspection & Insurance Co. Bradely Dillon
High Engineering Corporation Stuart Moore
Honeywell Jerry Kucharski, CFPS
Indianapolis Power and Light Timothy Healey
INSPEC International Ltd. William R. Parsons, P.Eng.
Jelco Bradley Rohlf
Kee Safety, Inc. Chris Huber
Lawrence Livermore National Security, LLC David Baldwin
Liberty Mutual Nick Hutchinson
Lighthouse Safety LLC Paul Clarke, CEng, MIMechE
LJB Inc. Andrew Diamond, MInstP, BSc (Hons)
Malta Dynamics, LLC Dan Shipp
Martin/Martin Consulting Engineers Eric Miller
Monsanto Philip Clemmons
MSA Graham Willmott
Murdock Webbing Co. Inc. John Ingram
National Association of Tower Erectors Louis Renner, CSP
PenSafe Steve McConnell, CSP, CIH
Pigeon Mountain Industries Cal Sparks
Reliance Industries Matthew Zaffini
Rigid Lifelines John Corriveau
Rooftop Anchor, Inc. Mark Benes
Safety Connection, Inc. Thomas Kramer, P.E., CSP
Safety Equipment Institute Rupert Noton, CEng, MIStructE
Tyson Munford, P.E. Adam Chapin
W. Joe Shaw Chad McDanel
Arnie Galpin, P.E. Rob Willis
Kimberly Hunter Jeff Bowles
Kynan Wynne Jeremiah Wangsgard
Tyson Munford, P.E. Brian Cruikshank
Clint Honeycutt, Sr. Jeff Bowles
Janice Honeycutt Kimberly Hunter
Steve Sanders Kynan Wynne
Schreiber Foods
Shell Oil Company
SKYLOTEC North America LP
Southern Weaving Co.
Sparkling Clean Window Company
SPRAT
STE
Sturges Manufacturing Co., Inc.
SureWerx/PeakWorks
Travelers
Trinity Industries, Inc.
Tritech Fall Protection Systems, Inc.
U.S. Air Force
U.S. Bureau of Reclamation
U.S. Department of Interior – BSEE
U.S. Department of the Navy
UAW
UL
Vertical Access LLC
Walt Disney Parks & Resorts
Werner Co.
Western Area Power Administration
WJE
Zachry Group

Mark Winchester
George Jerome
Edward Grosse
Gregory Byers
Douglas Mercier
Michael Masterson, Jr.
Andrew Broadway
Curtiss Burdette
Samuel Terry
Art Schneider
Loui McCurley
Cedric Smith
Michael C. Wright, P.E., CPE, CSP
Mark Williams
Tyler Griffith
Andrew Hubman
Tim Accursi
Kenneth Lemke
Scott H. Richert, CSP, ARM, ALCM
Robin Wagstaff
John Seto, P.E.
Royer Sandoval
Mark S. Kantorowicz
Robert Baker
Shawn Smith, CSP
Shaun Reed
John M. Cushing, Jr.
Simon Baughman
Basil Tominna, P.E.
Shaun Smith, MEng, MA, CSP
Matthew S. Uptmor, OHST
Ian Givens
Beverly Wooten Stutts
Kelly Streeter, P.E.
Keith Luscinski
Kenneth Young, P.E.
Ian Bevan
Michael Cameron
Cody Rappoport
Patrick T. Nies
Will Schnyer
Daniel Gach, AIA, NCARB
Jason Kamman, CSP, CHST
Adam Rubin

This is a preview of "ANSI/ASSE Z359.18-20...". Click here to purchase the full version from the ANSI store.
Subgroup Z359.18 had the following members:

Greg Small, P.Eng., M.Eng. (Chair)
Rupert Noton, CEng, MIStructE (Vice Chair)
Tim Accursi
Tim Bambrick
Steve Batke
Allen Baughman
Tim Bissett
J. Nigel Ellis, Ph.D., P.E., CSP, CPE
Andrew Emmons, P.E.
Arnie Galpin, P.E.
Karl Guthrie
Dan Henn
Clint Honeycutt, Sr.
Christopher Huber
Audley Jones, CSP, CHST, CET
Joey Junio, P.E.
AJ Knapp
Thomas Kramer, P.E., CSP
David Lough
Raymond Mann
Tyson Munford, P.E.
Judd Perner
Shaun Reed
Bryan Robinson
John Seto, P.E.
Craig Shur
Keith Smith
Graham Willmott
Michael Wright, P.E., CPE, CSP
Kenneth Young, P.E.

A task force was created to finalize changes to this standard. The task force had the following members: Thom Kramer (LJB Inc.), Nolan Miller (LJB Inc.), Greg Small (High Engineering), Bill Parsons (High Engineering), Dan Shipp (ISEA), Dan Henn (Reliance Industries), Ray Mann (3M), Rob Willis (MSA), Tim Botti (MSA), Karl Guthrie (Climbtech), Al Baughman (Gorbel), Tim Bambrick (Malta Dynamics) and Mike Cameron (Werner).
Contents

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scope, Purpose, Application, Exceptions and Interpretations</td>
<td>8</td>
</tr>
<tr>
<td>1.1 Scope</td>
<td>8</td>
</tr>
<tr>
<td>1.2 Purpose & Application</td>
<td>9</td>
</tr>
<tr>
<td>1.3 Exceptions</td>
<td>9</td>
</tr>
<tr>
<td>1.4 Interpretations</td>
<td>9</td>
</tr>
<tr>
<td>2. Definitions and Types</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Definitions</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Types</td>
<td>9</td>
</tr>
<tr>
<td>3. Requirements</td>
<td>10</td>
</tr>
<tr>
<td>3.1 Design Requirements</td>
<td>10</td>
</tr>
<tr>
<td>3.2 Performance Requirements</td>
<td>13</td>
</tr>
<tr>
<td>4. Qualification Testing</td>
<td>15</td>
</tr>
<tr>
<td>4.1 Test Equipment</td>
<td>15</td>
</tr>
<tr>
<td>4.2 Test Procedures/Requirements</td>
<td>19</td>
</tr>
<tr>
<td>5. Markings and Instructions</td>
<td>27</td>
</tr>
<tr>
<td>5.1 Marking Requirements</td>
<td>27</td>
</tr>
<tr>
<td>5.2 Instruction Requirements</td>
<td>28</td>
</tr>
<tr>
<td>6. Inspection, Maintenance and Storage</td>
<td>31</td>
</tr>
<tr>
<td>6.1 Inspection</td>
<td>31</td>
</tr>
<tr>
<td>6.2 Maintenance and Storage</td>
<td>33</td>
</tr>
<tr>
<td>7. References</td>
<td>33</td>
</tr>
<tr>
<td>8. Figures</td>
<td>33</td>
</tr>
</tbody>
</table>
STANDARD REQUIREMENTS

1. SCOPE, PURPOSE, APPLICATION, EXCEPTIONS AND INTERPRETATIONS

1.1 Scope. This standard establishes requirements for the performance, design, testing, marking and instructions for use of anchorage connectors in travel restraint, fall arrest, rescue, work position, rope access and suspended component/tie-back line systems only.

1.2 Purpose and Application.

1.2.1 The purpose of this standard is to protect workers in occupations requiring personal protection from falls from heights, by providing verifiable requirements for the design and performance of anchorage connectors, along with test methods to assess conformity to these requirements.

1.2.2 This standard applies to manufacturers, distributors, testing organizations, regulators, purchasers and authorized users of personal fall protection equipment, as well as personnel responsible for the design and implementation of fall protection systems.

1.2.3 This standard partially addresses the quality and abilities of the substrate structure (anchorage) to which the anchorage connector is attached. Therefore, the anchorage connector also relies on users properly following users instructions provided by the manufacturer to create a safe anchorage system to which anchorage connectors are affixed. See Figure 1.

1.2.4 This standard does not differentiate between temporary, portable and permanent anchorage connectors.

1.2.5 Before any anchorage connector shall bear the marking ANSI Z359.18 or be represented in any way as being in compliance with this standard, it shall meet all applicable requirements of this standard. Establish such compliance in accordance with the requirements specified in ANSI/ASSE Z359.7.