The information and materials contained in this publication have been developed from sources believed to be reliable. However, the American Society of Safety Professionals (ASSP) as secretariat of the ANSI accredited A10 Committee or individual committee members accept no legal responsibility for the correctness or completeness of this material or its application to specific factual situations. By publication of this standard, ASSP or the A10 Committee does not ensure that adherence to these recommendations will protect the safety or health of any persons or preserve property.
ANSI®
ANSI/ASSP A10.28 – 2018

American National Standard
Construction and Demolition Operations
Safety Requirements for Work Platforms
Suspended from Cranes or Derricks

Secretariat

American Society of Safety Professionals
520 N. Northwest Highway
Park Ridge, Illinois 60068

Approved July 27, 2018

American National Standards Institute
Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer. Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution. The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he/she has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards. The American National Standards Institute does not develop standards and will in no circumstance give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretation should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

Caution Notice: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.
Foreword (This Foreword is not a part of American National Standard A10.28-2018.)

This standard is one of a series of safety standards that have been formulated by the Accredited Standards Committee on Safety in Construction and Demolition Operations, A10. It is expected that the standards in the A10 series will find a major application in industry, serving as a guide to contractors, labor and equipment manufacturers. For the convenience of users, a list of existing and proposed standards in the A10 series for Safety Requirements in Construction and Demolition Operations follows.

A10.1 Pre-Project & Pre-Task Safety & Health Planning
A10.2 Safety, Health and Environmental Training (under development)
A10.3 Powder-Actuated Fastening Systems
A10.4 Personnel Hoists and Employee Elevators
A10.5 Material Hoists
A10.6 Demolition Operations
A10.7 Use, Storage, Handling and Site Movement of Commercial Explosives and Blasting Agents
A10.8 Scaffolding
A10.9 Concrete and Masonry Construction
A10.10 Temporary and Portable Space Heating Devices
A10.11 Personnel Nets
A10.12 Excavation
A10.13 Steel Erection
A10.15 Dredging
A10.16 Tunnels, Shafts and Caissons
A10.17 Safe Operating Practices for Hot Mix Asphalt (HMA) Construction
A10.18 Temporary Roof and Floor Holes, Wall Openings, Stairways and Other Unprotected Edges
A10.19 Pile Installation and Extraction Operations
A10.20 Ceramic Tile, Terrazzo and Marble Work
A10.21 Safe Construction and Demolition of Wind Generation/Turbine Facilities (under development)
A10.22 Rope-Guided and Non-Guided Workers' Hoists
A10.23 Safety Requirements for the Installation of Drilled Shafts
A10.24 Roofing – Safety Requirements for Low-Sloped Roofs
A10.25 Sanitation in Construction
A10.26 Emergency Procedures for Construction Sites
A10.27 Hot Mix Asphalt Facilities
A10.28 Work Platforms Suspended from Cranes or Derricks
A10.29 Aerial Platforms in Construction (under development)
A10.31 Digger-Derricks
A10.32 Personal Fall Protection Used in Construction and Demolition Operations
A10.33 Safety and Health Program Requirements for Multi-Employer Projects
A10.34 Public Protection
A10.37 Debris Nets
A10.38 Basic Elements of a Program to Provide a Safe and Healthful Work Environment
A10.39 Construction Safety and Health Audit Program
A10.40 Reduction of Musculoskeletal Problems in Construction
A10.42 Rigging Qualifications and Responsibilities in the Construction Industry
A10.43 Confined Spaces in Construction and Demolition Operations
A10.44 Lockout/Tagout in Construction
A10.46 Hearing Loss Prevention
A10.47 Highway Construction Safety
A10.48 Communication Structures
A10.49 Control of Health Hazards

One purpose of these standards is to serve as guides to governmental authorities having jurisdiction over subjects within the scope of the A10 Committee standards. If these standards are adopted for governmental use, the reference of other national codes or standards in individual volumes may be
changed to refer to the corresponding regulations.

Normative Requirements: This standard uses the single column format common to many international standards. The normative requirements appear aligned to the left margin. To meet the requirements of this standard, machinery, equipment and process suppliers and users must conform to these normative requirements. These requirements typically use the verb “shall.”

NOTE: The informative or explanatory notes in this standard appear indented, in italics, in a reduced font size, which is an effort to provide a visual signal to the reader that this is informative note, not normative text, and is not to be considered part of the requirements of this standard; this text is advisory in nature only. The suppliers and users are not required to conform to the informative note. The informative note is presented in this manner in an attempt to enhance readability and to provide explanation or guidance to the sections they follow.

Revisions: The A10 Committee welcomes proposals for revisions to this standard. Revisions are made to the standard periodically (usually five years from the date of the standard) to incorporate changes that appear necessary or desirable, as demonstrated by experience gained from the application of the standard. Proposals should be as specific as possible, citing the relevant section number(s), the proposed wording and the reason for the proposal. Pertinent documentation would enable the A10 Committee to process the changes in a more-timely manner.

Interpretations: Upon a request in writing to the Secretariat, the A10 Committee will render an interpretation of any requirement of the standard. The request for interpretation should be clear, citing the relevant section number(s) and phrased as a request for a clarification of a specific requirement. Oral interpretations are not provided.

No one but the A10 Committee (through the A10 Secretariat) is authorized to provide any interpretation of this standard.

Approval: Neither the A10 Committee nor American National Standards Institute (ANSI) approves, certifies, rates or endorses any item, construction, proprietary device or activity.

Appendices: Appendices are included in most standards to provide the user with additional information related to the subject of the standard. Appendices are not part of the approved standard.

Checklists: Checklists included in A10 standards may be copied and used in non-commercial settings only.

Committee Meetings: The A10 Committee meets twice per year. Persons wishing to attend a meeting should contact the Secretariat for information.

Standard Approval: This standard was processed and approved for submittal to ANSI by the American National Standards Committee on Safety in Construction and Demolition Operations, A10. Approval of the standard does not necessarily imply (nor is it required) that all Committee members voted for its approval. At the time ANSI approved this standard, the A10 Committee had the following members:
Organization Represented

<table>
<thead>
<tr>
<th>Name of Representative</th>
<th>Name of Representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard King, CSP, Chair</td>
<td>Steven Rank, Vice Chair</td>
</tr>
<tr>
<td>Timothy R. Fisher, CSP, CHMM, ARM, CPEA, Secretary</td>
<td>Lauren Bauerschmidt, MS Engr, CSP, Assistant Secretary</td>
</tr>
<tr>
<td>Jennie Dalesandro, Administrative Technical Support</td>
<td>3M Raymond A. Mann</td>
</tr>
<tr>
<td>Accident Prevention Corporation</td>
<td>3M Mike Boraas</td>
</tr>
<tr>
<td>AGC of America</td>
<td>3M Frank Burg, CSP, P.E.</td>
</tr>
<tr>
<td>American Insurance Services Group</td>
<td>3M Terry Krug, CSP, CIH</td>
</tr>
<tr>
<td>American Society of Civil Engineers</td>
<td>3M Michael McCaffrey</td>
</tr>
<tr>
<td>American Society of Safety Professionals</td>
<td>3M Kevin Cannon</td>
</tr>
<tr>
<td>American Wind Energy Association</td>
<td>3M Thad Nosal</td>
</tr>
<tr>
<td>American Work Platform Training Inc.</td>
<td>3M James G. Borchardt, CSP, CPE, CPSM, CRIS</td>
</tr>
<tr>
<td>APT Research, Inc.</td>
<td>3M John O’Connor, P.E.</td>
</tr>
<tr>
<td>Associated Builders and Contractors, Inc.</td>
<td>3M A. David Brayton, CSP, CPC</td>
</tr>
<tr>
<td>A-Z Safety Resources, Inc.</td>
<td>3M Christopher Daniels</td>
</tr>
<tr>
<td>Barton Malow Company</td>
<td>3M Michele Myers Mihelic</td>
</tr>
<tr>
<td>Black & Veatch</td>
<td>3M Dennis W. Eckstine</td>
</tr>
<tr>
<td>Building & Construction Trades Department</td>
<td>3M Saralyn Dwyer</td>
</tr>
<tr>
<td>Century Elevators</td>
<td>3M Stephen Wiltshire, MSc</td>
</tr>
<tr>
<td>Clark Construction Group</td>
<td>3M Greg Sizemore</td>
</tr>
<tr>
<td>Cole-Preferred Safety Consulting, Inc.</td>
<td>3M Jane F. Williams, CPEA, CCA</td>
</tr>
<tr>
<td>Construction & Realty Safety Group, Inc.</td>
<td>3M Jeffrey Oliver, CSP, CHST</td>
</tr>
<tr>
<td>CPWR – The Center for Construction Research</td>
<td>3M Mark Haggenmaker</td>
</tr>
<tr>
<td>& Training</td>
<td>3M Richard F. King, CSP</td>
</tr>
<tr>
<td>Edison Electric Institute</td>
<td>3M John H. Johnson, CSP</td>
</tr>
<tr>
<td>Elevator Industry Work Preservation Fund</td>
<td>3M Chris Cain, CIH</td>
</tr>
<tr>
<td>Ellis Fall Safety Solutions, LLC</td>
<td>3M Gary Gustafson</td>
</tr>
<tr>
<td>Engineering Systems, Inc.</td>
<td>3M Paula Manning</td>
</tr>
<tr>
<td>Fluor Corporation</td>
<td>3M Eric Schmidt, P.E.</td>
</tr>
<tr>
<td>Gilbane Building Co.</td>
<td>3M Kurt Dunmire, CSP, CHST</td>
</tr>
<tr>
<td>Richard D. Hislop</td>
<td>3M Barry Cole</td>
</tr>
<tr>
<td>Richard Hislop</td>
<td>3M Ron Lattanzio</td>
</tr>
<tr>
<td>Shawn Bradfield</td>
<td>3M Frank Marino</td>
</tr>
<tr>
<td>James Demmel</td>
<td>3M Bruce Lippy, Ph.D., CIH, CSP</td>
</tr>
<tr>
<td>Babak Memarian, Ph.D.</td>
<td>3M Jonathan Kerns</td>
</tr>
<tr>
<td>Adam Frederick</td>
<td>3M Michael Weatherred, CSP</td>
</tr>
<tr>
<td>Michael D. Morand</td>
<td>3M Jim Bates, CSP</td>
</tr>
<tr>
<td>J. Nigel Ellis, Ph.D., P.E., CSP, CPE</td>
<td>3M Edward J. Tuczak, P.E.</td>
</tr>
<tr>
<td>John T. Whitty, P.E.</td>
<td>3M Robert Hinderliter, ASP</td>
</tr>
<tr>
<td>David Ahearn, P.E.</td>
<td>3M Thomas Trauger, CSP, ARM, CRIS</td>
</tr>
<tr>
<td>Richard Hislop</td>
<td>3M Shawn Bradfield</td>
</tr>
<tr>
<td>Organization</td>
<td>Names</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Independent Electrical Contractors, Inc.</td>
<td>Paul Dolenc</td>
</tr>
<tr>
<td></td>
<td>Jerry Rivera</td>
</tr>
<tr>
<td>Innovative Safety, LLC</td>
<td>Daniel M. Paine</td>
</tr>
<tr>
<td></td>
<td>Barbara Paine</td>
</tr>
<tr>
<td>Institute of Makers of Explosives</td>
<td>Joshua Hoffman</td>
</tr>
<tr>
<td></td>
<td>Susan JP Flanagan</td>
</tr>
<tr>
<td></td>
<td>Steven Rank</td>
</tr>
<tr>
<td>International Association of Bridge, Structural, Ornamental and Reinforcing</td>
<td>Tim Keane</td>
</tr>
<tr>
<td>Iron Workers</td>
<td></td>
</tr>
<tr>
<td>International Association of Heat & Frost Insulators & Allied Workers</td>
<td></td>
</tr>
<tr>
<td>International Brotherhood of Boilermakers</td>
<td>Mark Garrett</td>
</tr>
<tr>
<td></td>
<td>Bridget Connors</td>
</tr>
<tr>
<td>International Brotherhood of Electrical Workers</td>
<td>David Mullen</td>
</tr>
<tr>
<td></td>
<td>Dan Gardner</td>
</tr>
<tr>
<td>International Brotherhood of Teamsters</td>
<td>LaMont Byrd, CIH</td>
</tr>
<tr>
<td></td>
<td>Asher Tobin</td>
</tr>
<tr>
<td>International Safety Equipment Association</td>
<td>Cristine Fargo</td>
</tr>
<tr>
<td>International Union of Bricklayers & Allied Craftworkers</td>
<td>Michael Kassman, CHST</td>
</tr>
<tr>
<td></td>
<td>Gerard Scarano</td>
</tr>
<tr>
<td>International Union of Operating Engineers</td>
<td>Christopher Trembl</td>
</tr>
<tr>
<td></td>
<td>Barbara McCabe</td>
</tr>
<tr>
<td>IUPAT</td>
<td>Kenneth Seal</td>
</tr>
<tr>
<td>Kiewit Power Constructors Co.</td>
<td>Rusty Brown, CSP</td>
</tr>
<tr>
<td></td>
<td>Dave Hinz</td>
</tr>
<tr>
<td>Laborers' International Union of North America</td>
<td>Walter A. Jones, MS, CIH</td>
</tr>
<tr>
<td></td>
<td>Travis Parsons</td>
</tr>
<tr>
<td>Lamar Advertising</td>
<td>Chuck Wigger, CSP</td>
</tr>
<tr>
<td></td>
<td>Beth Phelps</td>
</tr>
<tr>
<td>Lendlease Corporation</td>
<td>Joel Pickering, CET, CHMM</td>
</tr>
<tr>
<td></td>
<td>Michael Lentz</td>
</tr>
<tr>
<td>Liberty Mutual</td>
<td>Daniel P. Lavoie, CSP, ARM</td>
</tr>
<tr>
<td></td>
<td>Stan Williams, ARM, CHST</td>
</tr>
<tr>
<td>Marsh LLC</td>
<td>Timothy Bergeron, CSP</td>
</tr>
<tr>
<td>Maryland Occupational Safety & Health</td>
<td>Mischelle Vanreusel</td>
</tr>
<tr>
<td></td>
<td>Michael Daughaday</td>
</tr>
<tr>
<td>Mechanical Contractors Association of America</td>
<td>Peter Chaney, MS, CSP</td>
</tr>
<tr>
<td></td>
<td>Dennis Langley</td>
</tr>
<tr>
<td>Miller & Long Concrete Construction</td>
<td>Frank Trujillo</td>
</tr>
<tr>
<td></td>
<td>Alex Rodas, CHST</td>
</tr>
<tr>
<td>National Association of Home Builders</td>
<td>Robert Matuga</td>
</tr>
<tr>
<td></td>
<td>Chelsea Vetick</td>
</tr>
<tr>
<td>National Association of Railroad Safety Consultants & Investigators</td>
<td>Lewis Barbe, P.E., CSP, CRSP</td>
</tr>
<tr>
<td>National Electrical Contractors Association</td>
<td>Michael J. Johnston</td>
</tr>
<tr>
<td></td>
<td>Wesley Wheeler</td>
</tr>
<tr>
<td>National Institute for Occupational Safety & Health</td>
<td>Thomas G. Bobick, Ph.D., P.E., CSP, CPE</td>
</tr>
<tr>
<td></td>
<td>G. Scott Earnest, Ph.D., P.E., CSP</td>
</tr>
<tr>
<td>National Railroad Construction & Maintenance Association</td>
<td>Jeffrey D. Meddin, CSP, CHEP, CHCM</td>
</tr>
<tr>
<td>National Roofing Contractors Association</td>
<td>Harry Dietz</td>
</tr>
<tr>
<td></td>
<td>Tom Shanahan</td>
</tr>
<tr>
<td>National Society of Professional Engineers</td>
<td>E. Ross Curtis, P.E., DFE, F.ASCE, F.NSPE</td>
</tr>
<tr>
<td></td>
<td>Paul Swanson, P.E.</td>
</tr>
<tr>
<td>NESTI, Inc.</td>
<td>Michael Hayslip, P.E., CSP</td>
</tr>
<tr>
<td></td>
<td>Jack Madeley, P.E., CSP</td>
</tr>
</tbody>
</table>
Operative Plasterers and Cement Masons
International Association
PATMI
James A. Borchers
Craig Pratt
Luke Humphrey
Frank Massey
Jim E. Lapping, MS, P.E., CSP
Kathryn Stieler
Matthew Murphy
Ted Beville
DeAnna Martin
Carmen Shafer, CSP, CHST
Mike McCullion, CSP, ARM
Deven Johnson

Phoenix Fabricators and Erectors, Inc.
Professional Safety Consultants, Inc.
Safety Environmental Engineering, Inc.
Scaffold & Access Industry Association
Shafer Safety Solutions, LLC
Sheet Metal & Air Conditioning Contractors National Association
SMART Union
SPA Incorporated
Stock Enterprises
The Association of Union Constructors
Turner Construction Company
U.S. Army Corps of Engineers
U.S. Department of Energy
United Association of Plumbers & Pipefitters
United Brotherhood of Carpenters and Joiners of America
United Union of Roofers, Waterproofers & Allied Workers
West Virginia University Extension Service
ZBD Constructors, Inc.
Randall Krocka
Charles Austin, MS
Stanley Pulz, CSP, P.E.
Steve Stock, P.E., PLS
Wayne Creasap, II
Kathleen Dobson, CSP, CHST, STS-C
Cindy L. DePrater, ALCM
Abdon Friend, CSP
Michelle Brain
Steven Washington
Terry Meisinger
Maurice Haygood
Cheryl Ambrose, CHST, OHST
Rich Benkowski
William Irwin
Dale Shoemaker
Richard Tessier
Keith J. Vitkovich
Brandon Takacs, CSHM
Mark Fullen, Ed.D., CSP
Greg Thompson, CSP
Jeffrey D. Meddin, CSP, CHEP, CHCM

Independent Experts & Observers:

Alliance of Hazardous Materials Professionals
Conner Strong & Buckelew
Carl Heinlein, CSP, ARM, CRIS
Eric Voight
Ken Bogdan
Lockton Companies
National Association of Tower Erectors
U.S. Department of Labor – OSHA
Warfel Construction Company
John P. Jones
Kathryn Stieler
Dean McKenzie
Scott Ketcham
Jeffrey I. Pierce
Kevin Stoltzfus

ZBD Constructors, Inc.
Greg Thompson, CSP
Jeffrey D. Meddin, CSP, CHEP, CHCM

ZBD Constructors, Inc.
Subgroup A10.28 had the following members:

Frank Trujillo (Chair)
Frank Burg, CSP, P.E. (Liaison)
Barry Cole
Kathleen Dobson, CSP, CHST, STS.C
Richard Hislop
Luke Humphrey
Walter Jones, MS, CIH
Steve Miller
Michael Nordstrom
Contents

1. Scope ... 12
 1.1 Application ... 12
 1.2 General Requirements .. 12
 1.3 Critical Lift Plan ... 12

2. Definitions .. 13

3. Crane and Derrick Criteria .. 14
 3.1 Live Booms ... 14
 3.2 Load Line .. 14
 3.3 Swing Brake or Lock .. 14
 3.4 Weight Limitations .. 14
 3.5 Boom Angle Indicator ... 14
 3.6 Load Radius Indicator ... 14
 3.7 Level Grade ... 14
 3.8 Outriggers .. 14
 3.9 Two-Blocking Prevention .. 14
 3.10 Crane Manufacturers’ Recommendations .. 14

4. Crane and Derrick Inspection .. 15
 4.1 Components ... 15
 4.2 Frequency .. 15
 4.3 Repair Requirements .. 15

5. Suspended Work Platform Design ... 15
 5.1 Approval ... 15
 5.2 Minimum Safety Design Factor .. 15
 5.3 Capacity Identification .. 15
 5.4 Access Gate ... 15
 5.5 Overhead Protection ... 15
 5.6 Perimeter Protection ... 15
 5.7 Fall Protection .. 16
 5.8 Grab Rail .. 16
 5.9 Stability .. 16
 5.10 Access Height ... 16

6. Suspended Work Platform Construction ... 16
 6.1 Edges ... 16
 6.2 Weld Inspection ... 16
 6.3 Welding Competence .. 16
6.4 Attachment Points ... 16
7. Suspended Work Platform Testing and Inspection ... 16
 7.1 Frequency of Inspection ... 16
 7.2 Proof Testing .. 17
 7.3 Trial Lift ... 17
8. Rigging ... 17
 8.1 Distribution of Loads .. 17
 8.2 Limitations ... 17
9. Suspended Work Platform Loading .. 17
 9.1 Use .. 17
 9.2 Attachment .. 17
 9.3 Capacity ... 17
 9.4 Positive Connection .. 17
10. Personal Protective Equipment ... 18
 10.1 General .. 18
 10.2 Personal Fall Arrest Equipment .. 18
11. Signaling and Communications ... 18
 11.1 Positioning .. 18
 11.2 Positive Means ... 18
12. Safe Work Practices .. 18
 12.1 Working from Suspended Platforms ... 18
 12.2 Number of Personnel .. 18
 12.3 Operating Ability ... 18
 12.4 Setting Brakes and Locks ... 18
 12.5 Operator Positioning ... 18
 12.6 Outriggers .. 18
 12.7 Personnel Positioning ... 19
 12.8 Securing Suspended Platform ... 19
 12.9 Tag Lines ... 19
 12.10 Travel .. 19
 12.11 Weather ... 19
 12.12 Training ... 19
 12.13 Maintenance ... 19
 12.14 Pre-Lift Meeting ... 19
1. **Scope**

This standard applies to platforms suspended from the load lines of cranes or derricks in order to:

1. perform work at elevations that cannot be reached in a safe manner by other types of scaffolds or aerial work platforms; or
2. transport personnel to elevations where other means of access are unsafe or impractical because of design or worksite conditions.

1.1 **Application**

This standard shall apply to platforms hoisted by cranes or derricks in order to:

1. perform work at elevations that cannot be reached in a safe manner by other types of scaffolds or aerial work platforms, as determined by a qualified person; or
2. transport personnel to elevations where other means of access are unsafe or impractical because of design or worksite conditions. Safe use of such equipment is dependent upon the user following all provisions contained herein.

1.2 **General Requirements**

The use of a crane or derrick to hoist employees on a personnel platform is acceptable only after the qualified person (person responsible for the lift) has completed a job safety analysis (JSA) that includes consideration of conventional means of access such as a personnel hoist, ladder, stairway, aerial lift, elevating work platform or scaffold as a practical alternative. The JSA shall also include the following at a minimum and shall be maintained on the jobsite:

1. Jobsite information including physical description of area (north, east, south, west).
2. Reasons for lift including factors prohibiting the use of scaffolds, aerial work platforms, ladders or other such equipment; such as considerations related to environmental and work factors such as ability to reach work area in a feasible manner; impact of ice, snow, oil on ladders, steps or runways; structural stability, etc.
3. Steps to be followed to complete the lift.
4. Hazards associated with each step in the process.
5. Controls associated with each hazard.

1.3 **Critical Lift Plan**

A critical lift plan identifying the following must be prepared in advance and signed by the qualified person.

1.3.1 A critical lift plan shall include the following:

- Make, model and serial number of crane or derrick.
- Configuration of crane or derrick including boom length, jib, counterweight, wire rope allowable line pull and capacities at maximum expected radius.
- Ground conditions and blocking required for stability, proximity to power lines and other overhead hazards.