Designation: ASN-0003

Species-Level Identification of Animal Cells through Mitochondrial Cytochrome c Oxidase Subunit 1 (CO1) DNA Barcodes

This document provides recommended protocols for Species-Level Identification of Animal Cells through Mitochondrial Cytochrome c Oxidase Subunit 1 (CO1) DNA Barcodes. In accordance with the ATCC® Standards Development Organization, a consensus was met to assure the development of an accepted standard for biomaterials.
TABLE OF CONTENTS

1. OVERVIEW 5
 1.1. Scope 5
 1.2. Scope Summary 5

2. DEFINITIONS 8

3. ABBREVIATIONS 15

4. HISTORICAL BACKGROUND TO SPECIES IDENTIFICATION 17
 4.1. Introduction 17
 4.2. History 17
 4.3. Species Identification Methods 18
 4.3.1. Classical Identification Methods 18
 4.3.2. DNA-based Species Identification Methods 19
 4.4. DNA Barcoding As a Standard for Animal Species Identification 21
 4.5. Limitations of DNA Barcoding 22
 4.6. DNA Barcode Reference Libraries 23

5. DNA BARCODING APPLICATIONS AND PROTOCOLS 27
 5.1. Introduction 27
 5.2. Procedures for the Extraction, Purification, Quantification, & Assessment of the Quality of the Total (Genomic & Mitochondrial) DNA extracted from Various Species 29
 5.2.1. Introduction - DNA Extraction and Quantification Methods 29
 5.2.2. Total DNA Isolation for DNA Barcoding Species Identification 29
 5.2.3. DNA Concentration and Quality Assessment for PCR 37
 5.3. Procedures to PCR-Amplify the CO1 Barcode DNA Target: Introduction 41
 5.3.1. Recommended Primers for Mitochondrial CO1 Barcode PCR Amplification 41
 5.4. DNA sequencing of CO1 Barcode Amplicons & Evaluation of Sequence Quality 59
 5.4.1. Available Methods to Sequencing CO1 Barcode Amplicon 59
 5.4.2. Submission Requirements for Sequencing DNA CO1 Barcode Amplicons 60
 5.4.3. Assessing the Quality of the DNA Sequencing Results 61
 5.4.4. DNA Sequencing Data 62
 5.4.5. Additional Guidelines for Troubleshooting Problematic Sequencing Results 64
6. SEQUENCING DATA ANALYSIS, INTERPRETATION, AND DATABASE COMPARISON 65

6.1. Data Analysis, Interpretation, and Database Comparison Overview 65
6.1.1. Equipment 65
6.1.2. Detailed Procedure 66
6.1.3. General Analysis 66
6.1.4. Evaluating run control 77
6.1.5. Acceptable Criteria 78
6.1.6. Sequence quality defined 79
6.2. FASTA Generation 85
6.3. Sequence Identification 86

7. Troubleshooting 94
7.1. Troubleshooting: Sample and Sequence Errors and Limitations. 94
7.2. Troubleshooting - PCR Amplification of CO1 Target. 96
7.3. Troubleshooting Problematic DNA Sequencing Results:

7.3.1. Specific Troubleshooting Steps for DNA Sequencing Results: Symptoms, Observations, Possible Causes, and Recommendations 99

8. REFERENCES 107

Appendix 1: Precautions and Prerequisites for all Procedures 113
Appendix 2: Overview of Procedures for Determining the CO1 Barcoding of Animal Cells 118
Appendix 3: Isolation of DNA from Various Starting Materials 124
Appendix 3.1: Isolation of DNA from Cells and Tissues using Organic Methods 124
Appendix 3.2: Isolation of DNA by “Salting-Out Procedure” 129
Appendix 3.3: Isolation of DNA from FTA Cards 131
Appendix 3.4: Isolation of DNA from Formalin-Fixed Paraffin-embedded (FFPE) tissue samples 134
Appendix 4: Quality Control Procedures for isolated DNA 137
Appendix 4.1: DNA Quantification by UV Absorbance - Spectrophotometry 137
Appendix 4.2: DNA Quantification by PICOGREEN® (Refer to Manufacturer’s Manual for Detailed Instructions) 139
Appendix 4.3: Assessing the integrity of total DNA (genomic + mitochondrial) by agarose gel electrophoresis
Designation: ASN-0003

Species-Level Identification of Animal Cells through Mitochondrial Cytochrome c Oxidase Subunit 1 (CO1) DNA Barcodes

1. OVERVIEW

1.1. Scope
Vertebrate and invertebrate animal cells and tissues are important in vitro systems and tools for scientists in diverse disciplines such as basic cell biology, taxonomy, and animal control (regulatory). An assay for species identity is crucial for the accuracy and reproducibility of each of these disciplines. The commonly employed isoenzyme analysis provides species confirmation of a very limited number of animal species and has been useful primarily only for authenticating cultured animal cells. A DNA sequence-based approach can be used for the identification of vertebrate and invertebrate animal cells at the species level by targeting variation in ~650 bp of the 5' region of the mitochondrial Cytochrome c oxidase subunit 1 (CO1) gene and by comparing the target sequence to a reference library of sequences derived from expert-identified specimens.

1.2. Scope Summary
DNA barcoding (CO1 analysis) can successfully identify a wide range of species from various animal taxa, even discriminating between species of the same genus and can be used for many sample types ranging from cultured cells to entire organisms. The technique is easily replicated among laboratories and, because the reference databases contain verified sequences derived from morphological voucher (reference) specimens, it provides a reliable means of validating the putative species identification of a sample. Such authenticated cultures/tissues can serve as standard reference materials or as controls of authenticated animal cells for tissue culture, regulatory, and taxonomic applications.

This document is intended for the identification of the species of origin of a tissue/organism sample and not for the identification of the organ from which these cells derived. Neither traditional methods of cell line authentication nor DNA barcoding can identify from which tissue in an organism a sample of cells originate.

This document was written by the ASN-0003 ATCC Standards Workgroup members, as listed below:

Jason Katz Cooper, MS [Workgroup Chair]
Biology Professor
Community College of Beaver County
1 Campus Drive, Monaca, PA 15061

Yvonne Reid, PhD [Workgroup Co-Chair]
Manager/Scientist, Cell Biology Program
ATCC
10801 University Boulevard, Manassas, VA 20110-2209