Abstract

This standard establishes a method for specifying certain welding, brazing, and nondestructive examination information by means of symbols. Detailed information and examples are provided for the construction and interpretation of these symbols. This system provides a means of specifying welding or brazing operations as well as nondestructive examination, including the examination method, frequency, and extent.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While the AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions are entrusted to appropriately qualified and competent personnel.

This standard may be superseded by the issuance of new editions. This standard may also be corrected through publication of amendments or errata. It may also be supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda are posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

The AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

On occasion, text, tables, or figures are printed incorrectly, constituting errata. Such errata, when discovered, are posted on the AWS web page (www.aws.org).

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 550 N.W. LeJeune Road, Miami, FL 33126 (see Annex H). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS A2 Committee on Definitions and Symbols. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS A2 Committee on Definitions and Symbols and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS A2 Committee on Definitions and Symbols to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.
This page is intentionally blank.
Personnel

AWS A2 Committee on Definitions and Symbols

B. B. Grimmett, Chair Areva NP
J. P. Christein, Vice Chair Huntington Ingalls Industries—Newport News Shipbuilding
S. N. Borrero, Secretary American Welding Society
L. J. Barley OTC—Daihen
D. M. Beneteau Centerline (Windsor) Limited
C. K. Ford Hobart Institute of Welding Technology
B. Galliers General Electric Aviation
J. J. Gullotti Electric Boat Corporation
R. L. Holdren Applications Technologies Company, LLC
C. Lander St. John Inspection Services
P. M. Newhouse BC Hydro Engineering—Quality Assurance
W. F. Qualls Consultant
J. J. Vagi Engineering Consultant
J. L. Warren CNH America, LLC
B. D. Worley GE Aviation, Dayton—Elano Division

Advisors to the AWS A2 Committee on Definitions and Symbols

J. E. Greer Moraine Valley College
L. J. Siy Consultant

AWS A2C Subcommittee on Symbols

J. P. Christein, Chair Huntington Ingalls Industries—Newport News Shipbuilding
J. J. Gullotti, Vice Chair Electric Boat Corporation
S. N. Borrero, Secretary American Welding Society
C. K. Ford Hobart Institute of Welding Technology
C. Lander St. John Inspection Services
P. M. Newhouse BC Hydro Engineering—Quality Assurance
J. L. Warren CNH America, LLC
B. D. Worley GE Aviation, Dayton—Elano Division

Advisors to the AWS A2C Subcommittee on Symbols

L. J. Barley OTC—Daihen
D. M. Beneteau Centerline (Windsor) Limited
B. Galliers General Electric Aviation
R. L. Holdren Applications Technologies Company, LLC
L. J. Siy Consultant
Foreword

This foreword is not part of AWS A2.4:2012, Standard Symbols for Welding, Brazing, and Nondestructive Examination, but is included for informational purposes only.

Joining processes and examination methods cannot take their proper place as fabricating tools unless means are provided for conveying information from the designer to joining and inspection personnel. The symbols in this publication are intended to be used to facilitate communication among the design, fabrication, and inspection personnel. Statements such as “to be welded throughout” or “to be completely welded,” in effect, transfer the design responsibility from the designer to production personnel, who cannot be expected to know design requirements.

The symbols presented in this standard provide the means for placing welding, brazing, and nondestructive examination information on drawings. In practice, many users will need only a few of the symbols, and, if they desire, can select only the parts of the system that fit their needs.

The publication AWS A2.4 came into existence in 1976 as a result of combining and superseding two earlier documents, A2.0, Standard Welding Symbols, and A2.2, Nondestructive Testing Symbols. Both of these early documents had their origins in work done jointly by the American Welding Society and the American Standards Association (ASA) Sectional Committee Y32. AWS A2.0 was first published in 1947 and was revised in 1958 and 1968. AWS A2.2 first appeared in 1958 and was revised in 1969.

The evolution of AWS A2.4, Standard Symbols for Welding, Brazing, and Nondestructive Testing, is shown below:

- ANSI/AWS A2.4-76 Symbols for Welding and Nondestructive Testing;
- ANSI/AWS A2.4-79 Symbols for Welding and Nondestructive Testing, Including Brazing;
- ANSI/AWS A2.4-86 Standard Symbols for Welding, Brazing, and Nondestructive Examination;
- ANSI/AWS A2.4-93 Standard Symbols for Welding, Brazing, and Nondestructive Examination;
- ANSI/AWS A2.4-98 Standard Symbols for Welding, Brazing, and Nondestructive Examination; and

This seventh edition of AWS A2.4 has undergone extensive formatting modifications locating the figures closer to their referencing clauses. Numerous figures and clauses were revised and new figures added for clarification purposes. Several illustrations were added with the intent of making the standard more user-friendly. For example, Figures 47 and 48 have been added to illustrate the application of intermittent edge welds, which had previously lacked illustration. In addition, a new Informative Annex F, ISO 2553 Welding Symbols, was added to introduce users to ISO welding symbols. This introduction is educational and not intended to replace the official ISO document. Many of the modifications made were the result of comments and suggestions from the users of this standard.

This new edition also contains some revised technical content. For user clarity, the depth of groove placeholder “S” has been replaced by “D”, and the groove weld size “(E)” has been replaced by “(S)” throughout the standard for groove welds. The history behind the “(E)” was to designate effective throat dimension for the groove weld size. These letter modifications will not alter the meaning of the groove welding symbol. Letters only reflect a placeholder for a numerical value and thus will not change the meaning of any existing or future use of the groove welding symbol. In addition, this letter modification will line up with the AWS A3.0M/A3.0, Standard Welding Terms and Definitions, methodology. Another change introduced is the standardization of the term “Depth of Groove” throughout the standard. In past revisions, “Depth of Bevel” was used randomly in place of “Depth of Groove.” This change was made since a bevel weld symbol is only one symbol of the groove weld symbol family.

Comments and suggestions for the improvement of this standard are welcome. They should be sent to the Secretary, AWS A2 Committee on Definitions and Symbols, American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.
Table of Contents

Personnel ... v
Foreword .. vii
List of Tables .. xiii
List of Figures ... xiii

1. General Requirements

1.1 Scope ... 1
1.2 Units of Measurement .. 1
1.3 Safety ... 1

2. Normative References

... 1

3. Terms and Definitions

... 2

4. Basic Welding Symbols

4.1 Distinction between Weld Symbol and Welding Symbol .. 2
4.2 Basis of Reference ... 2
4.3 Weld Symbols .. 2
4.4 Supplementary Welding Symbols .. 3
4.5 Welding Symbols ... 3
4.6 Placement of the Welding Symbol ... 4
4.7 Illustrations .. 4

5. Joint Types

... 4

6. General Provisions for Welding Symbols

6.1 Location Significance of the Arrow ... 4
6.2 Location of the Weld with Respect to the Joint ... 6
6.3 Orientation of Specific Weld Symbols .. 8
6.4 Break in the Arrow .. 8
6.5 Combination Weld Symbols ... 8
6.6 Multiple Arrow Lines .. 8
6.7 Multiple Reference Lines .. 8
6.8 Field Weld Symbol .. 16
6.9 Extent of Welding Denoted by Symbols ... 16
6.10 Weld-All-Around Symbol .. 16
6.11 Tail of the Welding Symbol .. 19
6.12 Contour Symbols .. 19
6.13 Melt-Through Symbol ... 20
6.14 Melt-Through with Edge Welds .. 20
6.15 Method of Drawing Symbols .. 20
6.16 U.S. Customary and SI Units ... 20
6.17 Weld Dimension Tolerance .. 20
6.18 Changes in Joint Geometry during Welding .. 20

7. Groove Welds

... 23
7.1 General .. 23
Page No.

<table>
<thead>
<tr>
<th>Number</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Depth of Groove and Groove Weld Size</td>
<td>25</td>
</tr>
<tr>
<td>7.3</td>
<td>Groove Dimensions</td>
<td>35</td>
</tr>
<tr>
<td>7.4</td>
<td>Length of Groove Welds</td>
<td>35</td>
</tr>
<tr>
<td>7.5</td>
<td>Intermittent Groove Welds</td>
<td>39</td>
</tr>
<tr>
<td>7.6</td>
<td>Contours and Finishing of Groove Welds</td>
<td>39</td>
</tr>
<tr>
<td>7.7</td>
<td>Back and Backing Welds</td>
<td>44</td>
</tr>
<tr>
<td>7.8</td>
<td>Joints with Backing</td>
<td>46</td>
</tr>
<tr>
<td>7.9</td>
<td>Joints with Spacers</td>
<td>46</td>
</tr>
<tr>
<td>7.10</td>
<td>Consumable Inserts</td>
<td>46</td>
</tr>
<tr>
<td>7.11</td>
<td>Groove Welds with Backgouging</td>
<td>46</td>
</tr>
<tr>
<td>7.12</td>
<td>Seal Welds</td>
<td>49</td>
</tr>
<tr>
<td>7.13</td>
<td>Skewed Joints</td>
<td>49</td>
</tr>
<tr>
<td>8.1</td>
<td>General</td>
<td>52</td>
</tr>
<tr>
<td>8.2</td>
<td>Size of Fillet Welds</td>
<td>52</td>
</tr>
<tr>
<td>8.3</td>
<td>Length of Fillet Welds</td>
<td>52</td>
</tr>
<tr>
<td>8.4</td>
<td>Intermittent Fillet Welds</td>
<td>57</td>
</tr>
<tr>
<td>8.5</td>
<td>Fillet Welds in Holes and Slots</td>
<td>57</td>
</tr>
<tr>
<td>8.6</td>
<td>Contours and Finishing of Fillet Welds</td>
<td>57</td>
</tr>
<tr>
<td>8.7</td>
<td>Skewed Joints</td>
<td>57</td>
</tr>
<tr>
<td>9.1</td>
<td>General</td>
<td>58</td>
</tr>
<tr>
<td>9.2</td>
<td>Plug Weld Size</td>
<td>58</td>
</tr>
<tr>
<td>9.3</td>
<td>Angle of Countersink</td>
<td>58</td>
</tr>
<tr>
<td>9.4</td>
<td>Depth of Filling</td>
<td>58</td>
</tr>
<tr>
<td>9.5</td>
<td>Spacing of Plug Welds</td>
<td>58</td>
</tr>
<tr>
<td>9.6</td>
<td>Number of Plug Welds</td>
<td>58</td>
</tr>
<tr>
<td>9.7</td>
<td>Contours and Finishing of Plug Welds</td>
<td>62</td>
</tr>
<tr>
<td>9.8</td>
<td>Joints Involving Three or More Members</td>
<td>62</td>
</tr>
<tr>
<td>10.1</td>
<td>General</td>
<td>63</td>
</tr>
<tr>
<td>10.2</td>
<td>Width of Slot Welds</td>
<td>63</td>
</tr>
<tr>
<td>10.3</td>
<td>Length of Slot Welds</td>
<td>63</td>
</tr>
<tr>
<td>10.4</td>
<td>Angle of Countersink</td>
<td>63</td>
</tr>
<tr>
<td>10.5</td>
<td>Depth of Filling</td>
<td>63</td>
</tr>
<tr>
<td>10.6</td>
<td>Spacing of Slot Welds</td>
<td>63</td>
</tr>
<tr>
<td>10.7</td>
<td>Number of Slot Welds</td>
<td>66</td>
</tr>
<tr>
<td>10.8</td>
<td>Location and Orientation of Slot Welds</td>
<td>66</td>
</tr>
<tr>
<td>10.9</td>
<td>Contours and Finishing of Slot Welds</td>
<td>66</td>
</tr>
<tr>
<td>11.1</td>
<td>General</td>
<td>67</td>
</tr>
<tr>
<td>11.2</td>
<td>Size or Strength of Spot Welds</td>
<td>67</td>
</tr>
<tr>
<td>11.3</td>
<td>Spacing of Spot Welds</td>
<td>67</td>
</tr>
<tr>
<td>11.4</td>
<td>Number of Spot Welds</td>
<td>72</td>
</tr>
<tr>
<td>11.5</td>
<td>Extent of Spot Welding</td>
<td>72</td>
</tr>
<tr>
<td>11.6</td>
<td>Contours and Finishing of Spot Welds</td>
<td>72</td>
</tr>
<tr>
<td>11.7</td>
<td>Multiple-Member Spot Welds</td>
<td>72</td>
</tr>
<tr>
<td>12.1</td>
<td>General</td>
<td>74</td>
</tr>
</tbody>
</table>

8.6 Contours and Finishing of Fillet Welds	57
8.7 Skewed Joints	57
9.7 Contours and Finishing of Plug Welds	62
9.8 Joints Involving Three or More Members	62
10.8 Location and Orientation of Slot Welds	66
10.9 Contours and Finishing of Slot Welds	66
11.1 General	67
11.2 Size or Strength of Spot Welds	67
11.3 Spacing of Spot Welds	67
11.4 Number of Spot Welds	72
11.5 Extent of Spot Welding	72
11.6 Contours and Finishing of Spot Welds	72
11.7 Multiple-Member Spot Welds	72
12.1 General	74
12.2 Size and Strength of Seam Welds ... 74
12.3 Length of Seam Welds ... 74
12.4 Dimensions of Intermittent Seam Welds .. 78
12.5 Number of Seam Welds .. 78
12.6 Orientation of Seam Welds ... 79
12.7 Contours and Finishing of Seam Welds .. 79
12.8 Multiple-Member Seam Welds ... 79

13. Edge Welds .. 80
13.1 General ... 80
13.2 Edge Weld Size .. 80
13.3 Single- and Double-Edge Welds ... 80
13.4 Edge Welds Requiring Complete Joint Penetration 80
13.5 Edge Welds on Joints with More Than Two Members 80
13.6 Length of Edge Welds ... 80
13.7 Intermittent Edge Welds ... 80

14. Stud Welds .. 88
14.1 Side Significance .. 88
14.2 Stud Size .. 88
14.3 Spacing of Stud Welds .. 88
14.4 Number of Stud Welds ... 88
14.5 Dimension Location ... 88
14.6 Location of First and Last Stud Welds ... 88

15. Surfacing Welds .. 88
15.1 Use of the Surfacing Weld Symbol ... 88
15.2 Size (Thickness) of Surfacing Welds .. 88
15.3 Extent, Location, and Orientation of Surfacing Welds 91
15.4 Surfacing a Previous Weld ... 91
15.5 Surfacing to Adjust Dimensions ... 91

16. Brazing Symbols .. 91
16.1 General ... 91
16.2 Braze Fillet ... 91
16.3 Special Preparation Not Specified ... 91
16.4 Application of Symbols ... 91

17. Nondestructive Examination Symbols .. 95
17.1 Elements .. 95
17.2 Examination Method Letter Designations ... 95
17.3 Supplementary Symbols .. 95
17.4 Standard Location of the Elements .. 95
17.5 General Provisions for Nondestructive Examination Symbols 95
17.6 Welding and Nondestructive Examination Symbols 96
17.7 U.S. Customary and SI Units ... 96
17.8 Supplementary Nondestructive Examination Symbols 96
17.9 Specifications, Codes, and References ... 97
17.10 Extent, Location, and Orientation of Nondestructive Examination Symbols 97
17.11 Number of Examinations ... 97
17.12 Examination of Areas ... 98

Annex A (Normative)—Tables .. 99
Annex B (Informative)—Design of Standard Symbols (U.S. Customary Units) .. 105

xi
List of Tables

Table	Page No.
A.1 Joint Type Designators | 99
A.2 Letter Designations of Welding, Brazing, and Allied Processes and Their Variations | 100
A.3 Alphabetical Cross Reference to Table A.2 by Process | 101
A.4 Alphabetical Cross Reference to Table A.2 by Letter Designation | 102
A.5 Suffixes for Optional Use in Applying Welding, Brazing, and Allied Processes | 104
A.6 Examination Method Letter Designations | 104

List of Figures

Figure	Page No.
1 Weld Symbols | 2
2 Supplementary Symbols | 3
3 Standard Location of the Elements of a Welding Symbol | 3
4 Joint Types | 5
5 Application of Weld Symbols to Indicate the Arrow Side, the Other Side, and Both Sides | 7
6 Applications of the Break in the Arrow of the Welding Symbol | 9
7 Combination Weld Symbols | 10
8 Application of the Symbol for the Specification of the Extent of Welding | 12
9 Application of the “TYPICAL” Welding Symbol | 15
10 Specification of the Location and Extent of Fillet Welds | 17
11 Application of the Melt-Through Symbol | 21
12 Specification of Groove Weld Size, Depth of Groove Not Specified | 24
13 Application of Dimensions to the Groove Weld Symbol | 25
14 Specification of Groove Weld Size, (S), Related to Depth of Groove, D | 26
15 Specification of Depth of Groove and Groove Weld Size | 27
16 Application of Symbols for the Specification of Groove Weld Size Only | 29
17 Application of Symbols for Combined Groove and Fillet Welds | 30
18 Application of Symbols for Complete Joint Penetration with Joint Geometry Optional | 31
19 Partial Joint Penetration with the Joint Geometry Optional | 32
20 Specification of the Root Opening of Groove Welds | 33
21 Specification of the Groove Angle of Groove Welds | 34
22 Applications of Flare-Bevel and Flare-V-Groove Weld Symbols | 36
23 Specification of the Length of Welding of Groove Welds | 38
24 Specification of the Extent of Welding of Groove Welds | 40
25 Applications of Intermittent Groove Welds | 41
26 Application of the Flush and Convex Contour Symbols | 43
27 Application of Back or Backing Weld Symbol | 45
28 Joints with Backing or Spacers | 47
29 Application of Consumable Insert Symbol | 48
30 Application of the Symbol for Groove Welds with Backgouging | 50
31 Skewed Joint | 51
<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Application of the Symbols for the Size and Length of Fillet Welds</td>
</tr>
<tr>
<td>33</td>
<td>Application of the Intermittent Fillet Weld Symbol</td>
</tr>
<tr>
<td>34</td>
<td>Application of the Fillet Weld Symbol</td>
</tr>
<tr>
<td>35</td>
<td>Application of the Plug Weld Symbol</td>
</tr>
<tr>
<td>36</td>
<td>Application of Information to Plug Weld Symbols</td>
</tr>
<tr>
<td>37</td>
<td>Application of the Slot Weld Symbol</td>
</tr>
<tr>
<td>38</td>
<td>Application of Information to Slot Weld Symbols</td>
</tr>
<tr>
<td>39</td>
<td>Application of the Spot Weld Symbol</td>
</tr>
<tr>
<td>40</td>
<td>Application of Information to the Spot Weld Symbol</td>
</tr>
<tr>
<td>41</td>
<td>Application of the Projection Weld Symbol</td>
</tr>
<tr>
<td>42</td>
<td>Multiple-Member Spot Weld</td>
</tr>
<tr>
<td>43</td>
<td>Application of the Seam Weld Symbol</td>
</tr>
<tr>
<td>44</td>
<td>Application of Information to the Seam Weld Symbol</td>
</tr>
<tr>
<td>45</td>
<td>Multiple-Member Seam Weld</td>
</tr>
<tr>
<td>46</td>
<td>Application of the Edge Weld Symbol</td>
</tr>
<tr>
<td>47</td>
<td>Specification of the Length of Welding of Edge Welds</td>
</tr>
<tr>
<td>48</td>
<td>Applications of Intermittent Edge Welds</td>
</tr>
<tr>
<td>49</td>
<td>Application of the Stud Weld Symbol</td>
</tr>
<tr>
<td>50</td>
<td>Application of the Surfacing Weld Symbol</td>
</tr>
<tr>
<td>51</td>
<td>Application of Brazing Symbols</td>
</tr>
<tr>
<td>52</td>
<td>Supplementary Nondestructive Examination Symbols</td>
</tr>
<tr>
<td>53</td>
<td>Standard Location of the Elements in the Nondestructive Examination Symbol</td>
</tr>
<tr>
<td>D.1</td>
<td>Examples of the Welding of Tubing</td>
</tr>
<tr>
<td>D.2</td>
<td>Changes in Joint Geometry During Welding</td>
</tr>
<tr>
<td>D.3</td>
<td>Example of a Flare Groove</td>
</tr>
</tbody>
</table>
1. General Requirements

1.1 Scope. This standard presents a system for indicating welding, brazing, and nondestructive examination requirements. The system includes provisions for the graphical representation of welds, brazes, and nondestructive examination methods with conventions for specifying, at a minimum, the location and extent of their application. Optional elements and supplementary symbols provide a means for specifying additional requirements.

The figures included with the text are intended to show how the correct format and applications of symbols may be used to convey welding, brazing, and nondestructive examination information. They are not intended to represent recommended welding, brazing, nondestructive examination, or design practice.

The clause addressing brazing uses the same symbols that are used for welding. The clause on nondestructive examination symbols establishes the symbols to be used on drawings to specify nondestructive examination for determining the suitability of components. The nondestructive examination symbols included in this standard represent nondestructive examination methods as discussed in the latest edition of AWS B1.10M/B1.10, Guide for the Nondestructive Examination of Welds. Definitions and the details for the use of the various nondestructive examination methods are found in AWS B1.10M/B1.10.

The limitations included in specifications and codes are also beyond the scope of this standard.

1.2 Units of Measurement. This standard does not require units of measure. Therefore, no equivalents or conversions are contained except when they are cited in examples.

1.3 Safety. Safety and health issues and concerns are beyond the scope of this standard and therefore are not addressed herein.

2. Normative References

The standards listed below contain provisions that, through reference in this text, constitute mandatory provisions of this AWS standard. For undated references, the latest edition of the referenced standard shall apply. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.