Abstract

This code covers the requirements associated with welding sheet steel having a minimum specified yield point no greater than 80 ksi [550 MPa]. The code requirements cover any welded joint made from the commonly used structural quality low-carbon hot rolled and cold rolled sheet and strip steel with or without zinc coating (galvanized). Clause 1 includes general provisions, Clause 4 design, Clause 5 prequalification, Clause 6 qualification, Clause 7 fabrication, and Clause 8 inspection.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While the AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions are entrusted to appropriately qualified and competent personnel.

This standard may be superseded by the issuance of new editions. Users should ensure that they have the latest edition.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

Finally, the AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

On occasion, text, tables, or figures are printed incorrectly, constituting errata. Such errata, when discovered, are posted on the AWS web page (www.aws.org).

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Standards Development, 8669 NW 36 St, # 130, Miami, FL 33166 (see Annex C). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS D1 Committee on Structural Welding. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) that may be of use in improving this standard should be sent to AWS Headquarters. Any pertinent data supporting the comments are required. Such comments will receive careful consideration by the AWS D1 Committee on Structural Welding and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS D1 Committee on Structural Welding to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166.
Foreword

This foreword is not part of this standard but is included for informational purposes only.

When the first edition of AWS D1.3/D1.3M, Specification for Welding Sheet Steel in Structures, was developed and issued in 1978, it was anticipated that changes would be needed in the specification as further research was conducted on sheet steel welded joints. After users’ experience with the specification and development of new sheet steel applications, it was revised in 1981, 1989, 1998, 2008, and now in 2017. Also, in the 1981 edition, the title of the standard was changed to AWS D1.3/D1.3M, Structural Welding Code—Sheet Steel, to conform with the uniform titles now being given to standards developed by the AWS D1 Committee on Structural Welding. The many changes in this document reflect both experience in using the code and the results of research, principally by the American Iron and Steel Institute’s Subcommittee on Sheet Steel.

One of the primary objectives of this code is to define the allowable capacities used in sheet steel applications in which transfer of calculated load occurs. The foremost examples of such applications are steel decks, panels, storage racks, and stud and joist framing members. It is a concurrent objective of this code to impose workmanship, technique, and qualification requirements so as to effect consistently sound execution of welding of joints in these categories.

Certain shielded metal arc, gas metal arc, gas tungsten, gas metal arc, and flux cored arc welding procedure specifications (WPSs) when used with certain types of joints, have been tested by users and have a history of satisfaction performance. These WPSs are designated as prequalified, may be employed without further evidence, and include most of those that are commonly used. However, the purpose of defining prequalified WPSs is not to preclude the use of other WPSs as they are qualified.

When other processes, WPSs, or joints are proposed, they are subject to the applicable provisions of this code and shall be qualified by tests. The obligation is placed on the contractor to prepare WPSs and qualify them before production use.

All WPSs (prequalified and qualified) must include the classification of the filler metal, its size, and for each type of weld, its melting rate or other suitable means of current control indicative of the melting rate, as applicable. The requirements for the qualification of welders and welding operators are also given. A Welder qualification test requires each welder to prove their ability to produce satisfactory welds using prequalified or qualified WPSs.

Although this code is essentially directed at those joints that are used to transfer loads, the quality of welds where strength is not a governing consideration should meet quality standards that will maintain the integrity of the supporting structure. The allowable capacity provisions of Clause 4 could be disregarded when the welds are not used in a loadcarrying capacity.

Underlined text in the subclauses indicates an editorial or technical change from the 2008 edition. A vertical line in the margin next to a figure or table indicates a revision from the 2008 edition.

The following is a summary of the most significant technical revisions contained in D1.3/D1.3M:2018:
Table of Contents

Dedication ... v
Personnel .. vii
Foreword .. ix
List of Tables .. xiii
List of Figures ... xiii

1. General Requirements
1.1 Scope ... 1
1.2 Standards of Measurement ... 1
1.3 Safety ... 1
1.4 Sheet Steel Base Metal .. 2
1.5 Welding Processes ... 2
1.6 Weld Metal Requirements .. 2
1.7 Weld Types ... 3
1.8 Welding Symbols .. 4

2. Normative References ... 11

3. Terms and Definitions .. 13

4. Design of Welded Connections ... 16

Part A—Allowable Load Capacities
4.1 Base Metal Stresses .. 16
4.2 Alternate Allowable Load Capacities in Weld Joints 16

Part B—Details of Welded Connections 19

5. Prequalification of WPSs ... 28

5.1 Scope ... 28
5.2 General ... 28
5.3 Joint Details .. 28

6. Qualification ... 34

6.1 Scope ... 34

Part A—General Requirements 34
6.2 Preparation of a WPS and PQR 34
6.3 Engineer’s Approval ... 34
6.4 Responsibility .. 34
6.5 WPS Requirements ... 34

Part B—Welding Procedure Specification (WPS) 35
6.6 Essential Variable Limitations 35
6.7 Number of Tests, Testing Methods, and Acceptance Standards for WPS Qualification 35

Part C—Welder Performance Qualification 39
6.8 Essential Variables ... 39
6.9 Number of Tests and Methods for Welder Performance Qualification 40
6.10 Duration of Qualification .. 40
Fabrication

General

Preparation of Base Metal

Assembly

Allowable Deviation from WPS for Lower Temperatures Using Annex A, Note 1

Inspection

Part A Acceptance Criteria

Production Weld Acceptance Criteria

Part B Contractor’s Responsibility

Inspection of WPS and Welder Qualifications

Inspection of Work

Annexes

Annex A (Normative)—Applicable Provision Requirements when Welding D1.3 Sheet Steels to D1.1 Other Steel Product Forms

Annex B (Informative)—Sample Welding Forms

Annex C (Informative)—Requesting an Official Interpretation on an AWS Standard

Annex D (Informative)—Gage Numbers and Equivalent Thicknesses

Annex E (Informative)—Reference Documents

Commentary on Structural Welding Code—Sheet Steel

List of AWS Documents on Sheet Steel
Structural Welding Code—Sheet Steel

1. General Requirements

1.1 Scope

This code contains the requirements for arc welding of structural sheet/strip steels, including cold formed members, hereafter collectively referred to as “sheet steel,” which are equal to or less than 3/16 in [5 mm] in nominal thickness. In addition, welding hollow structural section (HSS) also called tubular members with wall thickness less than 1/8 in [3 mm] are included in the scope of this code. Design requirements for HSS member connections are not in the scope of this code. When this code is stipulated in contract documents, conformance with all its provisions shall be required, except for those provisions that the Engineer or contract documents specifically modifies or exempts.

When used in conjunction with AWS D1.1/D1.1M, conformance with the applicable provisions of Annex A of AWS D1.3/D1.3M shall apply (see also Table 1.1). Two weld types unique to sheet steel, arc spot and arc seam, are included in this code.

1.1.1 Applicable Materials. This code is applicable to the welding of structural sheet steels to other structural sheet steels or to supporting structural steel members.

1.1.2 General Requirements. The fundamental premise of the code is to provide general requirements applicable to any situation. Acceptance criteria for production welds different from those specified in the code shall be permitted for a particular application, provided they are suitably documented by the proposer and approved by the Engineer. These alternate acceptance criteria shall be based upon evaluation of suitability for service using past experience, experimental evidence, or engineering analysis considering material type, service load effects, and environmental factors.

1.1.3 Approval. All references to the need for approval shall be interpreted to mean approval by the Engineer, defined as the duly designated person who acts for and in behalf of the owner on all matters within the scope of this code. Deviations from code requirements shall require the Engineer’s approval.

1.2 Standard Units of Measurement

This standard makes use of both U.S. Customary Units and the International System of Units (SI). The latter are shown within brackets ([]) or in appropriate columns in tables and figures. The measurements may not be exact equivalents; therefore, each system must be used independently. Equivalents for gages or fractions are noted within parenthesis throughout the standard.

1.3 Safety

Safety and health issues and concerns are beyond the scope of this standard; some safety and health information is provided, but such issues are not fully addressed herein.

Safety and health information is available from the following sources:

American Welding Society:

(1) ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes
(2) AWS Safety and Health Fact Sheets
(3) Other safety and health information on the AWS website
Material or Equipment Manufacturers:

1. Safety Data Sheets supplied by materials manufacturers
2. Operating Manuals supplied by equipment manufacturers

Applicable Regulatory Agencies

Work performed in accordance with this standard may involve the use of materials that have been deemed hazardous, and may involve operations or equipment that may cause injury or death. This standard does not purport to address all safety and health risks that may be encountered. The user of this standard should establish an appropriate safety program to address such risks as well as to meet applicable regulatory requirements. ANSI Z49.1 should be considered when developing the safety program.

1.4 Sheet Steel Base Metal

1.4.1 Specified Base Metals. Sheet steel base metals to be welded under this code shall conform to the requirements of the latest edition of one of the specifications listed in Table 1.2, or any sheet steel qualified in conformance with 1.4.2. Any combination of these steels may be welded together. These steels may also be welded to any of the steels listed in the latest edition of AWS D1.1/D1.1M, Structural Welding Code—Steel.

1.4.2 Other Base Metals. When a steel other than those covered in 1.4.1 is approved under the provisions of the project or product specification, and such a steel is proposed for welded construction, the weldability of the steel and the WPS for welding it shall be established by qualification in conformance with the requirements of Clause 6 and such other requirements as prescribed by the Engineer.

1.4.3 Minimum Yield Point. The provisions of this code are intended for use with sheet steel having a minimum specified yield point equal to or less than 80 ksi [550 MPa].

1.5 Welding Processes

1.5.1 Approved Processes. This code provides for welding with the shielded metal arc welding (SMAW), gas metal arc welding (GMAW), flux cored arc welding (FCAW), gas tungsten arc welding (GTAW), or submerged arc welding (SAW) welding processes. (NOTE: Any variation of gas metal arc welding (GMAW), including short-circuiting transfer, is acceptable.)

1.5.2 Stud Welding. When stud welding through the flat portion of sheet steel decking or roofing onto other product forms, the WPS, the studs, and the quality control requirements shall conform with the applicable provisions in the AWS D1.1/D1.1M code.

1.5.3 Other Processes. Other welding processes may be used when approved by the Engineer. In such case, the Engineer shall specify any additional qualification requirements necessary to assure satisfactory joints for the intended service.

1.6 Weld Metal Requirements

1.6.1 Matching Filler Metals. When using the indicated weld process, the filler metals listed in Table 1.2 provide a weld joint with strengths matching that of the base metal. When base metals of dissimilar strengths are welded, the filler metal tensile strength shall be equal to or greater than that of the lowest tensile strength base metal.

1.6.2 Other Base Metal/Filler Metal Combinations. Base metal/filler metal combinations other than those described in 1.6.1 shall be permitted when approved by the Engineer.

1.6.3 Manufacturer’s Certification. When requested by the Engineer, the contractor shall furnish an electrode manufacturer’s certification stating that the electrode will meet the requirements of the classification.

1.6.4 Electrodes for Shielded Metal Arc Welding (SMAW)

1.6.4.1 AWS Specification. Electrodes for SMAW shall conform to the requirements of the latest edition of AWS A5.1/A5.1M, Specification for Carbon Steel Electrodes for Shielded Metal Arc Welding, or to the requirements of AWS A5.5/A5.5M, Specification for Low-Alloy Steel Electrodes for Shielded Metal Arc Welding.
1.6.4.2 **Low-Hydrogen Electrode Control.** This control shall be for sheet steel that is welded to a primary structural member which is thicker than 1/4 in [6 mm], placing the jurisdiction of this control as specified in AWS D1.1/D1.1M.

1.6.4.3 **Nonlow-hydrogen Electrodes.** Nonlow-hydrogen electrodes may be used in a qualified WPS for arc spot, arc seam, and arc plug welds of sheet metal in the flat position to primary structural members thicker than ¼ in [6 mm], as limited by Annex A Table A.1 Note 1.

1.6.5 Submerged Arc Welding (SAW)

1.6.5.1 **AWS Specification.** The bare electrodes and fluxes used in combination for SAW shall conform to the requirements of the latest edition of AWS A5.17/A5.17M, Specification for Carbon Steel Electrodes and Fluxes for Submerged Arc Welding, or to the requirements of the latest edition of AWS A5.23/A5.23M, Specification for Low-Alloy Steel Electrodes and Fluxes for Submerged Arc Welding.

1.6.5.2 **Flux.** Flux used for submerged arc welding shall be dry and free of contamination from dirt, mill scale, oils, or other foreign material. All flux shall be purchased in packages that can be stored, under normal conditions, for at least six months without such storage affecting its welding characteristics or weld properties. Flux from damaged packages shall be discarded or shall be dried at a minimum temperature of 250°F [120°C] for one hour before use. Flux shall be placed in the dispensing system immediately upon the opening of a package, or if used from an opened package, the top 1 in [25 mm] shall be discarded. Flux that has been wet shall not be used.

1.6.6 Gas Metal Arc Welding (GMAW), Flux Cored Arc Welding (FCAW), and Gas Tungsten Arc Welding (GTAW) Filler Metals

1.6.6.1 **AWS Specification.** The filler metals and shielding for GMAW, FCAW, or GTAW shall conform to the requirements of the latest edition of AWS A5.18/A5.18M, Specification for Carbon Steel Electrodes and Rods for Gas Metal Arc Welding, or AWS A5.28/A5.28M, Specification for Low-Alloy Steel Electrodes and Rods for Gas Shielded Arc Welding, AWS A5.20/A5.20M, Specification for Carbon Steel Electrodes for Flux Cored Arc Welding, AWS A5.29/A5.29M, Specification for Low-Alloy Steel Electrodes for Flux Cored Arc Welding, or AWS A5.36/A5.36M, Specification for Carbon and Low-Alloy Steel Flux Cored Electrodes for Flux Cored Arc Welding and Metal Cored Electrodes for Metal Arc Welding as applicable.

1.6.6.2 **Shielding Media.** A gas or gas mixture used for shielding in GMAW, FCAW when required, or GTAW, shall meet the requirements of AWS A5.32/A5.32M, Specification for Welding Shielding Gases. When requested by the Engineer, the gas manufacturer shall furnish certification that the gas or gas mixture meets the requirements of AWS A5.32/A5.32M.

1.7 Weld Types

1.7.1 **Square-Groove Welds in Butt Joints.** These types of welds are restricted to the welding of sheet steel to sheet steel in all positions of welding.

1.7.2 **Fillet Welds.** These types of welds may be used in all positions of welding involving sheet steel to sheet steel or a sheet steel to a supporting structural member.

1.7.2.1 **Fillet Welds in Lap and T-Joints.** Fillet welds in lap and T-joints may be used in all positions (see Table 1.3) involving a sheet steel to sheet steel or a sheet steel to a supporting structural member.

NOTE: When fillet welding sheet steel to a supporting structural member, measures shall be taken to prevent underbead cracking.

1.7.3 **Flare-Groove Welds.** These types of welds may be used in all positions involving the following:

(1) Two sheet steels for flare-V and flare-bevel grooves

(2) A sheet and a supporting structural member for flare-bevel groove (see Table 1.3)

1.7.4 **Arc Spot Welds.** These types of welds are spot welds made by an arc welding process in which the welds are made without preparing a hole in either member. These welds are restricted to the welding of sheet steel to supporting structural member in the flat position (see Table 1.3). *NOTE: Neither the thickness of a single sheet nor the combined thickness of two sheets welded to the thicker supporting structural members shall exceed 0.15 in [3.7 mm].*
1.7.5 **Arc Seam Welds.** Arc seam welds are made without preparing a slot in either member. These welds are restricted to the welding of joints involving:

1. Sheet to sheet in the flat or horizontal position
2. Sheet to thicker supporting structural member in the flat position (see Table 1.3)

1.7.6 **Arc Plug Welds.** Arc plug welds are made by filling a circular hole in an outer member or members. These welds may be used in all positions involving the following:

1. Multiple layers of sheet steels
2. Multiple layers of sheet steels and a thicker supporting structural member

1.8 **Welding Symbols**

The welding symbols used in this specification shall be those designated in AWS A2.4:2007, *Standard Symbols for Welding, Brazing, and Nondestructive Examination*. Special conditions shall be fully explained by notes or details.