Water Fluoridation
Principles and Practices

AWWA MANUAL M4
Fifth Edition

American Water Works Association

Science and Technology
AWWA unites the drinking water community by developing and distributing authoritative scientific and technological knowledge. Through its members, AWWA develops industry standards for products and processes that advance public health and safety. AWWA also provides quality improvement programs for water and wastewater utilities.
This page intentionally blank.
Contents

List of Figures, v
List of Tables, vii
Foreword, ix
Acknowledgments, xi

Chapter 1 History, Theory, and Chemicals
- History and Theory, 1
- Chemicals, 9
- Bibliography, 13

Chapter 2 Fluoridation System Planning
- General System Configurations, 16
- Chemical Selection Guidelines, 18
- Preliminary Calculations, 20
- Feed Rate and Dosage Calculations, 22
- Example Feed Rate Calculations, 23
- Example Calculated Dosage Problems, 26
- Simplification of Feed Rate and Dosage Calculations, 27
- Preliminary Planning Examples, 31
- Bibliography, 31

Chapter 3 Design, Equipment, and Installation
- Design, 33
- Feeders, 37
- Auxiliary Equipment, 45
- Equipment Installation, 53
- Bibliography, 55

Chapter 4 Operation and Maintenance
- Control Scheme, 57
- Troubleshooting, 61
- Records, 63
- Maintenance, 63
- Safety, 66
- Bibliography, 71

Chapter 5 Defluoridation
- Activated Alumina (AA) Treatment Process, 73
- Reverse Osmosis Treatment, 79
- Bibliography, 80

Additional Sources of Information, 81

Index, 85

AWWA Manuals, 89
Figures

1-1 Dental caries and dental fluorosis in relation to fluoride in public water supplies, 2
1-2 The demineralization and remineralization processes lead to remineralized enamel crystals with surfaces rich in fluoride and lower in solubility, 6
2-1 Acid feed installation, 16
2-2 Solution fluoride saturator, 17
2-3 Dry feed installation with volumetric feeder, 17
2-4 Dry feed installation with gravimetric feeder, 18
2-5 Optimal fluoride levels, 21
2-6 Fluoridation nomograph, 29
2-7 Fluoridation alignment chart, 30
3-1 Fluoride injection point, 35
3-2 Positive-displacement solution feeders, 38
3-3 Upflow saturator, 40
3-4 Downflow saturator, 41
3-5 Screw-type volumetric dry feeder, 42
3-6 Roll-type volumetric dry feeder, 43
3-7 Belt-type gravimetric feeder, 43
3-8 Gravimetric feeder—loss-in-weight type, 44
3-9 Pacing meter—electronic metering pump, 49
3-10 Pacing meter—variable-speed motor control, 50
4-1 Simplified process control scheme, 58
5-1 Activated alumina with pH adjustment fluoride removal water treatment plant schematic flow diagram, 76
5-2 Conventional RO/NF membrane process, 80
This page intentionally blank.
Tables

1-1 Number of people and percentage of the population receiving optimally fluoridated water through public water systems (PWS), by state—US, 1992 and 2000, 3
1-2 Years when Canadian cities began fluoridation, 5
1-3 Characteristics of fluoride compounds, 10
2-1 Fluoridation planning checklist, 19
2-2 Optimal fluoride levels, 20
2-3 Typical values of purity and available fluoride ion (AFI), 22
2-4 Fluoride calculation factors, 28
3-1 Detention time of sodium fluorosilicate in dissolving tanks, 48
4-1 Interfering substances, 60
4-2 Emergency treatment for ingested fluoride overdose of fluorosilicic acid H_2SiF_6, 68
4-3 Emergency treatment for ingested fluoride overdose of dry fluoride chemicals NaF and Na_2SiF_6, 68
4-4 Summary of reported fluoride overfeed incidents in public water systems, 69
4-5 Recommended fluoride overfeed action, 70
Foreword

This manual assists decision makers planning fluoridation installations, engineers designing them, and water utility personnel operating them. The manual presents guidelines and is not intended to take the place of expert advice. Anyone planning or using fluoridation should carefully consider fluoride research, regulations, and methods.

The first edition of AWWA Manual M4 was prepared from material supplied and previously published by the US Environmental Protection Agency. This fifth edition updates the following major areas:

- Health effects
- State and federal regulations
- Defluoridation treatment
Acknowledgments

This edition was prepared by William C. Lauer (AWWA Water Quality and Treatment Engineer). The revision (chapters 1–4) was reviewed by Thomas G. Reeves, Centers for Disease Control and Prevention (Atlanta, Ga.). Frederick Rubel Jr., Rubel Engineering, Inc., (Tucson, Ariz.) authored chapter 5. AWWA wishes to thank these individuals, for without their valued input, this manual could not have been completed.

This edition was reviewed and approved by the AWWA Distribution and Plant Operations Division Board of Trustees and the AWWA Technical and Education Council:

AWWA Distribution and Plant Operation Division

Kanwal Oberoi, Chair, Charleston Commissioners of Public Works, Charleston, S.C.
Terrance O'Neill, Vice-Chair, Connecticut Water Company, Killingworth, Conn.
Rhonda Harris, Professional Operations Inc., Plano, Texas
George Kunkel, Philadelphia Water Department, Philadelphia, Pa.
Kenneth Morgan, KCM Consulting, Saint Peters, Mo.
Nicholas Pizzi, Environmental Engineering & Technology, Twinsburg, Ohio
Melinda Raimann, Cleveland Division of Water, Cleveland, Ohio
This page intentionally blank.
Chapter 1

History, Theory, and Chemicals

Fluoridation treatment in this manual refers to the addition or removal of fluoride from drinking water to maintain an optimum level to reduce tooth decay. Fluoridation has been practiced for more than 50 years. This chapter discusses the history of fluoridation and the theory of how it reduces tooth decay. The chapter summarizes the results of health effects studies and addresses legal issues. The common chemicals used in fluoridation are also discussed.

HISTORY AND THEORY

Fluoridation History

In 1908, Dr. Frederick McKay, a dentist in Colorado Springs, Colo., became concerned because the teeth of many children in the community were mottled or discolored. Investigations showed that excessive amounts of fluoride in the local water supply caused the mottling. In other towns using naturally fluoridated water, mottled teeth appeared only when, as in Colorado Springs, the fluoride content of the water was abnormally high. This mottling was later termed dental fluorosis. Fluorosis occurs only when fluoride is consumed during childhood tooth formation, generally between the ages of 6 months and 3 years.

In the 1920s, the teeth of thousands of children and the water supplies of the communities in which they lived were evaluated. By 1931, the results showed significant relationships between the fluoride concentration in the drinking water and the incidence of tooth decay, technically called dental caries. Three distinct relationships were discovered (Figure 1-1).

1. When the fluoride level exceeds approximately 1.5 mg/L, any further increase does not significantly decrease the incidence of decayed, missing, or filled teeth, but higher levels do increase the occurrence and severity of mottling.