Concrete Pressure Pipe

AWWA MANUAL M9

Third Edition

MANUAL OF WATER SUPPLY PRACTICES — M9, Third Edition Concrete Pressure Pipe

Copyright © 1979, 1995, 2008 American Water Works Association

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information or retrieval system, except in the form of brief excerpts or quotations for review purposes, without the written permission of the publisher.

Disclaimer

The authors, contributors, editors, and publisher do not assume responsibility for the validity of the content or any consequences of their use. In no event will AWWA be liable for direct, indirect, special, incidental, or consequential damages arising out of the use of information presented in this book. In particular, AWWA will not be responsible for any costs, including, but not limited to, those incurred as a result of lost revenue. In no event shall AWWA's liability exceed the amount paid for the purchase of this book.

Project Manager and Technical Editor: Franklin S. Kurtz Production: Melanie Schiff Manual Coordinator: Beth Behner

Unless otherwise noted, all photographs used in this manual are provided courtesy of the American Concrete Pressure Pipe Association.

Library of Congress Cataloging-in-Publication Data

Concrete pressure pipe. – 3rd ed.
p. cm. – (AWWA manual; M9)
Includes bibliographical references and index.
ISBN 1-58321-549-2
1. Water-pipes. 2. Pipe, Concrete. 3. Pressure vessels. I. American Water Works Association.

TD491.C66 2008 628.1'5--dc22

2008010413

Printed in the United States of America American Water Works Association 6666 West Quincy Avenue Denver, CO 80235

ISBN 1-58321-549-2 978-1-58321-549-4 This is a preview of "AWWA M9-2008". Click here to purchase the full version from the ANSI store.

Contents

List of Figures, vii
List of Tables, xi
Acknowledgments, xiii
Chapter 1 Purpose and Scope1
Chapter 2 Description of Concrete Pressure Pipe 3
Prestressed Concrete Cylinder Pipe (ANSI/AWWA C301-Type Pipe), 3
Reinforced Concrete Cylinder Pipe (ANSI/AWWA C300-Type Pipe), 7
Reinforced Concrete Noncylinder Pipe (ANSI/AWWA C302-Type Pipe), 8
Concrete Bar-Wrapped Cylinder Pipe (ANSI/AWWA C303-Type Pipe), 10
Fittings and Special Pipe, 11
Reference, 12
Chapter 3 Hydraulics
Flow Formulas, 13
Effects of Aging on Carrying Capacity, 20
Head Losses, 20
Determining an Economical Pipe Diameter, 21
Air Entrapment and Release, 25
Blowoff Outlets, 25
References, 25
Chapter 4 Surge Pressure
Equations and Variables, 27
Negative Pressures, 30
Causes of Surge Pressure, 30
Control of Water Hammer, 31
References, 32
Chapter 5 External Loads
Major Installation Classifications, 33
Trench Conduits, 33
Embankment Conduits, 37
Positive Projection Installations, 37
Earth Loads on Large Diameter ANSI/AWWA C303 Pipe, 41

Negative Projection Installations, 42
Induced Trench Installations, 44
Jacked or Tunneled Conduits, 47
Determination of Live Load, 48
References, 56
Chapter 6 Bedding and Backfilling
Introduction, 57
Rigid Pipe, 57
Semirigid Pipe, 59
Unstable Foundations, 60
References, 61
Chapter 7 Design of Reinforced Concrete Pressure Pipe 63
Information Required for Pipe Design, 63
Design Procedure for Rigid Pipe (ANSI/AWWA C300- and C302-Type Pipe), 64
Design Procedure for Semirigid Pipe (ANSI/AWWA C303-Type Pipe), 86
References, 93
Chapter 8 Design of Fittings and Appurtenances
Fittings, 95
Fittings Design, 98
Specials, 117
References, 119
Chapter 9 Design of Thrust Restraints for Buried Pipe
Thrust Forces, 121
Hydrostatic Thrust, 121
Thrust Resistance, 123
Thrust Blocks, 124
Joints With Small Deflections, 126
Tied Joints, 132
Design Examples, 141
Combination Thrust-Restraint System, 167
Other Uses for Restraints, 170
References, 171
Chapter 10 Design of Pipe on Piers 173
Loads, 173

Cylinder Pipe, 173
Location of Piers, 177
Design of Pipe and Supports at Piers, 179
Protection of Exposed Concrete Pipelines, 183
References, 185
Chapter 11 Design of Subaqueous Installations
Application, 187
Pipe Design Features, 187
Subaqueous Pipe Details, 190
Installation, 191
Testing, 194
Chapter 12 Design Considerations for Corrosive Environments
History, 195
Inherent Protective Properties, 195
Special Environmental Conditions, 196
Bonding Pipelines, 199
Monitoring for Pipe Corrosion, 205
Cathodic Protection, 213
References, 214
Chapter 13 Transportation of Pipe 215
Truck Transportation, 215
Rail Transportation, 215
Barge Transportation, 218
Loading Procedures, 218
Delivery and Unloading, 218
Chapter 14 Installation by Trenching or Tunneling—Methods and Equipment 221
Trenching — General Considerations, 221
Open Trench Construction, 223
Bedding, 226
Pipe Installation—General, 227
Laying the Pipe, 228
Backfilling, 230
Tunnel Installations, 232
Jacking Methods, 233

Mining Methods, 235
Grouting, 235
References, 238
Chapter 15 Hydrostatic Testing and Disinfection of Mains
Hydrostatic Testing, 239
Disinfection of Mains, 241
Reference, 242
Chapter 16 Tapping Concrete Pressure Pipe
Threaded Pressure Taps Up to 2 In. (51 mm) in Diameter, 243
Pressure Taps for Flanged Outlets 3 In. (76 mm) and Larger, 245
Tapping Noncylinder Reinforced Concrete Pressure Pipe, 248
Supplemental Data, 248
Chapter 17Guide Specifications for the Purchase and Installation ofConcrete Pressure Pipe
Guide Specifications for Purchasing Concrete Pressure Pipe, 252
Guide Specifications for the Installation of Concrete Pressure Pipe, 254
Index
List of AWWA Manuals

Figures

- Figure 1-1 A typical installation in rugged terrain, 1
- Figure 2-1 Prestressed concrete cylinder pipe (ANSI/AWWA C301-type pipe), 5
- Figure 2-2 Fabrication of a steel cylinder on a "helical" machine, 6
- Figure 2-3 Prestressing concrete embedded cylinder pipe, 6
- Figure 2-4 Welding joint rings to cylinder, 7
- Figure 2-5 Reinforced concrete cylinder pipe (ANSI/AWWA C300-type pipe), 8
- Figure 2-6 Reinforced concrete noncylinder pipe (ANSI/AWWA C302-type pipe), 9
- Figure 2-7 Concrete bar-wrapped cylinder pipe (ANSI/AWWA C303-type pipe), 11
- Figure 2-8 Steel cylinder being hydrostatically tested on a mandrel-type tester, 11
- Figure 2-9 Installation of a large-diameter wye with reducer attached, 12
- Figure 3-1 Hydraulic profile for a gravity flow system, 15
- Figure 3-2 Hydraulic profile for a pumped flow system, 15
- Figure 3-3 The Moody diagram for friction in pipe, 18
- Figure 3-4 Approximate loss coefficients for commonly encountered flow configurations, 22
- Figure 4-1 Idealized surge cycle for instantaneous pump shutdown, 28
- Figure 5-1 Underground conduit installation classifications, 34
- Figure 5-2 Essential features of types of installations, 35
- Figure 5-3 Settlements that influence loads—positive projecting embankment installation, 38
- Figure 5-4 Settlements that influence loads—negative projecting embankment installation, 38
- Figure 5-5 Settlements that influence loads induced trench installation, 39
- Figure 5-6 Load coefficient for positive projection embankment condition, 43
- Figure 5-7 Load coefficient for negative projection and induced trench condition (p' = 0.5), 45
- Figure 5-8 Load coefficient for negative projection and induced trench condition (p' = 1.0), 45
- Figure 5-9 Load coefficient for negative projection and induced trench condition (p' = 1.5), 46
- Figure 5-10 Load coefficient for negative projection and induced trench condition (p' = 2.0), 46
- Figure 5-11 Live load distribution, 50
- Figure 5-12 Live load spacing, 50
- Figure 5-13 Wheel load surface contact area, 51
- Figure 5-14 Distributed load area—single dual wheel, 52
- Figure 5-15 Effective supporting length of pipe, 53
- Figure 5-16 Cooper E80 design load, 56
- Figure 6-1 Bedding and backfill for rigid pipe, 58
- Figure 6-2 Bedding and backfill for semirigid pipe, 60
- Figure 7-1 Olander moment, thrust, and shear coefficients for 90° bedding angle, 72
- Figure 7-2 Force diagrams for reinforced concrete pipe design, 73
- Figure 7-3 Section for proportioning tensile steel, 74
- Figure 7-4 Section through AWWA C303-type pipe wall, 92

Figure 8-1	Common fittings, 96
Figure 8-2	A 90-in. (2,290-mm) bend ready to install, 97
Figure 8-3	A reducer or increaser makes a gradual change in ID of the line, 97
Figure 8-4	A tee or cross is used for 90° lateral connections, 98
Figure 8-5	Bifurcations for splitting flow, 99
Figure 8-6	Various types of reinforcing, 100
Figure 8-7	Adapters used to connect pipe to valves, couplings, or pipe of a different material, 101
Figure 8-8	Typical end configurations, 102
Figure 8-9A	Typical four-piece bend, 105
Figure 8-9B	Free body diagram of one-fourth of a miter segment and fluid, 105
Figure 8-9c	Schematic of A_{trap} , 105
Figure 8-10	Replacement of steel at openings in fabricated fittings requiring collar or wrapped type of reinforcement, 109
Figure 8-11	Assumed hydrostatic load distribution for an equal-diameter wye with two-crotch-plate reinforcement, 110
Figure 8-12	Nomograph for selecting reinforcement plate depths of equal-diameter pipes, 111
Figure 8-13	N-factor curves for branch deflection angles less than 90°, 112
Figure 8-14	Q-factor curves for branch diameter smaller than run diameter, 112
Figure 8-15	Selection of top depth, 113
Figure 8-16	Wye-branch reinforcement plan and layout, 115
Figure 8-17	Three-plate wye-branch reinforcement plan and layout, 117
Figure 8-18	Typical outlets built in to pipe, 118
Figure 9-1	Thrusts and movement in pipeline, 122
Figure 9-2	Hydrostatic thrust T applied by fluid pressure to typical fittings, 122
Figure 9-3	Typical thrust blocking of a horizontal bend, 125
Figure 9-4	Typical profile of vertical-bend thrust blocking, 126
Figure 9-5	Tee and reducer on large-diameter line. Note sandbags behind tee as forms for placement of thrust block, 127
Figure 9-6	Locking of pipe at small deflections, 128
Figure 9-7	Four sections of unrestrained 36-in. (910-mm) prestressed concrete pipe span an 80-ft (24-m) wide washout in Evansville, Ind., 128
Figure 9-8A	Restraint of thrust at deflected, nontied joints on long-radius horizontal curves, 129
Figure 9-8 _B	Horizontal bearing factor for sand vs. depth-to-diameter ratio (H/D_0) (adapted from O'Rourke and Liu [1999]), 129
Figure 9-9A	Restraint of uplift thrust at nontied, deflected joints on long-radius vertical curves, 131
Figure 9-9 _B	Earth load for restrained joint calculations, 131
Figure 9-10	Free body diagram of forces and deformations at a bend, 133
Figure 9-11	Schematic strain and stress distributions at cylinder yield design criterion (\mathcal{E}_y = steel cylinder yield strain, f_y = steel cylinder yield stress, f_s = steel cylinder stress, f_c = concrete stress), 139
Figure 9-12	Schematic strain and stress distributions at ultimate strength limit state (ε_y = steel cylinder yield strain, f_y = steel cylinder yield stress, f_s = steel cylinder stress, f_c = concrete

stress, f_c = concrete stress), 139

Figure 9-13	Interaction diagram for example 2. The axial force-moment interaction diagrams corrresponding to the ultimate strength and the onset of yielding of the steel cylinder are both nonlinear, but have been approximated by a linear relationship here for ease of computation of the examples, 150
Figure 9-14	Infinite beam on elastic foundation with applied forces and moments at the ends of a beam segment, 154
Figure 9-15	Infinite beam on elastic foundation with applied force and moment at the end of a semi- infinite beam, 154
Figure 9-16	Schematic of mechanically harnessed joint with joint rotation, 155
Figure 9-17	Moment–rotation diagram, 156
Figure 9-18	Displacement along the pipe length, 161
Figure 9-19	Moment along the pipe length, 161
Figure 9-20	Rotation along the pipe length, 162
Figure 9-21	Shear along the pipe length, 162
Figure 9-22	Interaction diagram for example 3. The axial force-moment interaction diagrams corre- sponding to the ultimate strength and the onset of yielding of the steel cylinder are both nonlinear, but have been approximated by a linear relationship here for ease of computa- tion of the examples, 163
Figure 9-23A	Thrust restraint requirements for 36 in. C301(LCP) bulkhead with restrained joints at $P_w = 150 \text{ psi}$, $P_t = 80 \text{ psi}$, and $P_{ft} = 200 \text{ psi}$ with 4-ft earth cover in type III soil, 166
Figure 9-23b	Thrust restraint requirements for 54 in. C303 45° bend with welded restrained joints at P_w =200 psi, P_t = 100 psi, and P_n = 250 psi with 6-ft earth cover in type II soil, 166
Figure 9-23c	Thrust restraint requirements for 42 in. C301 (ECP) 75° bend with mechanically restrained joints at $P_w = 140$ psi, $P_t = 60$ psi, and $P_{jt} = 180$ psi with 5-ft earth cover in type III soil, 167
Figure 9-24	Typical welded pipe joints, 168
Figure 9-25	Details of typical harnessed joints, 169
Figure 9-26	Typical anchor pipe with thrust collar, 170
Figure 10-1	Pipe on piers, 174
Figure 10-2	Pipe elements assumed effective in resisting bending, 175
Figure 10-3	Configuration of pile-supported installations with joints offset from the supports, 178
Figure 10-4	Typical supports for pipe on piling, 180
Figure 10-5	Assumed load and force configuration for design of rigid pipe on piers, 181
Figure 10-6	50-ft (15-m) spans of 42-in. (1,070-mm) concrete pressure pipe were used in this aerial line crossing of a highway and river levee, 184
Figure 11-1	54-in. (1,370-mm) diameter pipe, preassembled to a 32-ft (9.75-m) unit, being lowered with a double bridge sling in a sewer outfall installation, 188
Figure 11-2	Typical subaqueous joint-engaging assembly, 191
Figure 11-3	Five 20-ft (6-m) sections of 84-in. (2,130-mm) diameter pipe were assembled on deck into a 100-ft (30-m) unit. The 100-ft (30-m) unit was then mounted on precast concrete caps and cradles and installed as a single unit on piles. Two derricks were used to lower the strongback, cradles, caps, and the 100-ft (30-m) pipe unit, 192

Figure 11-4 Large-diameter pipe being lifted with a special double bridge sling. Joint-engaging

	assemblies were installed at the ends of the pipe at the springline, 192
Figure 11-5	Rail-mounted gantry crane used for installing sections of ocean outfall near shore, 193
Figure 12-1	Typical joint bonding details for embedded cylinder (AWWA C301-type) pipe, 200
Figure 12-2	Typical joint bonding details for AWWA C303-type pipe or lined cylinder AWWA C301-type
0	pipe, 201
Figure 13-1	Unloading a typical flatbed truck trailer loaded with 36-in. (910-mm) concrete pressure
	pipe, 216
Figure 13-2	Special double-drop highway truck trailer loaded with a single large-diameter pipe, 216
Figure 13-3	Flatbed piggyback truck trailers loaded with small-diameter pipe, 217
Figure 13-4	Rail flat cars loaded with 144-in. (3,660-mm) diameter concrete pressure pipe, 217
Figure 13-5	Oceangoing barge carrying approximately 18,000 ft (5,486 m) of concrete pressure pipe, 218 $$
Figure 13-6	Specialized equipment for handling and transporting 252-in. (6,400-mm) (ID) pipe weighing 225 tons (204 metric tons) each, 219
Figure 14-1	Backhoe laying pipe, 224
Figure 14-2	Clamshell excavating inside sheeting, 225
Figure 14-3	Lowering 84-in. (2,140-mm) pipe to final bedding position in laying shield, 225
Figure 14-4	Pipe being laid on granular foundation, 227
Figure 14-5	Pipe bedding, 227
Figure 14-6	Applying lubricant to the gasket prior to installation, 229
Figure 14-7	Grouting a pipe joint, 231
Figure 14-8	Backfilling, 232
Figure 14-9	Tunnel casing pipe (132 in. [3,350 mm] in diameter) being jacked under a railroad using a metal push ring with a plywood cushion to protect the face of the pipe, 234
Figure 14-10	Concrete pressure pipe as a carrier pipe inside a casing, 236
Figure 14-11	Typical tunnel sections, 237
Figure 14-12	Special equipment, called a "tunnelmobile," being used to install large-diameter pipe in a tunnel, 237
Figure 15-1	Temporary internal test plug, 241
Figure 16-1	Small-diameter pressure tap using saddle with straps, 244
Figure 16-2	Small-diameter pressure tap using split studs, 245
Figure 16-3	Installation of a small-diameter threaded pressure tap using a saddle with straps, 246
Figure 16-4	Large-diameter tapping assembly, 247
Figure 16-5	Pressure tapping a 12-in. (300-mm) diameter flanged outlet on a larger-diameter pipe, 247
Figure 16-6	Pressure tap of a 12-in. (300-mm) diameter flanged outlet on a 24-in. (600-mm) diameter
	pipe, 248
Figure 16-7	Typical pressure-tapping site requirements, 249
Figure 17-1	30-in. (750-mm) pipe ready for delivery, 255
Figure 17-2	24-in. (600-mm) lined cylinder pipe strung along a right-of-way, 256
Figure 17-3	Prestressed concrete cylinder pipe being lowered into position. Note depth of embankment cut in background, 257

Tables

- Table 2-1
 General description of concrete pressure pipe, 4
- Table 3-1Various forms of the Hazen–Williams formula, 14
- Table 3-2 Comparison of theoretical Hazen–Williams C_h values to tested C_h values, 16
- Table 3-3Kinematic viscosity of water, 19
- Table 3-4Equivalent length formulas, 23
- Table 4-1Design values—surge wave velocities, *ft/sec (m/sec)*, 31
- Table 5-1Design values of settlement ratio, 42
- Table 5-2Design values of coefficient of cohesion, 49
- Table 5-3Impact factors for highway truck loads, 51
- Table 5-4Critical loading configurations, 51
- Table 5-5Highway loads on circular pipe (pounds per linear foot), 54
- Table 5-6Cooper E80 railroad loads on circular pipe (pounds per linear foot), 55
- Table 7-1Tabulation of strength method design for ANSI/AWWA C300-type pipe, 77
- Table 7-2Tabulation of strength method design for ANSI/AWWA C302-type pipe, 84
- Table 7-3 Allowable external load for ANSI/AWWA C303-type pipe of minimum class, 88
- Table 9-1Soil type selection guide, 136
- Table 9-2Summary of design examples and results of detailed calculation, 143
- Table 9-3Summary of additional design examples, 144
- Table 12-1Assumed values for required joint bonds shown in Tables 12-2, 12-3, and 12-4, 205
- Table 12-2Number of bonds for 48-in. prestressed concrete cylinder pipe, 206
- Table 12-3Number of bonds for 84-in. prestressed concrete cylinder pipe, 208
- Table 12-4Number of bonds for 144-in. prestressed concrete cylinder pipe, 210

This is a preview of "AWWA M9-2008". Click here to purchase the full version from the ANSI store.

This page intentionally blank.

Acknowledgments

Committee Personnel

The subcommittee that reviewed and developed this edition of AWWA Manual M9 had the following personnel at the time:

David P. Prosser, Chair Sam A. Arnaout Wayne R. Brunzell David Marshall Andrew E. Romer Armand W. Tremblay Mehdi S. Zarghamee

The Standards Committee on Concrete Pressure Pipe, which reviewed and approved this manual, had the following personnel at the time of approval:

Wayne R. Brunzell, Chair David P. Prosser, Secretary

General Interest Members

S.J. Abrera Jr.,* South Pasadena, Calif.	(AWWA)
D.T. Bradley, [†] SC Liaison, Oak Lodge Water District, Milwaukie, Ore.	(AWWA)
W.R. Brunzell, Brunzell Associates Ltd., Skokie, Ill.	(AWWA)
W.R. Dana,* Corona Del Mar, Calif.	(AWWA)
R.C. Edmunds, Jones Edmunds and Associates, Gainesville, Fla.	(AWWA)
L.B. Freese, Freese & Nichols Inc., Fort Worth, Texas	(AWWA)
J.K. Haney, HDR Engineering Inc., Austin, Texas	(AWWA)
M.M. Hicks, MWH Americas Inc., Walnut Creek, Calif.	(AWWA)
J.K. Jeyapalan,* Pipeline Consultant, New Milford, Conn.	(AWWA)
L.R. Keyser,* Fort Myers Beach, Fla.	(AWWA)
R.Y. Konyalian, Consulting Engineer, Huntington Beach, Calif.	(AWWA)
S.A. McKelvie, Parsons Brinckerhoff Quade & Douglas, Boston, Mass.	(AWWA)
H.L. Murphey,* Colleyville, Texas	(AWWA)
T. Niemann, Elizabeth Niemann & Associates, Louisville, Ky.	(AWWA)
P.J. Olson, [†] Staff Engineer Liaison, AWWA, Denver, Colo.	(AWWA)
R. Ortega,* Lockwood Andrews & Newnam, Houston, Texas	(AWWA)
J.J. Roller, CTL Group, Skokie, Ill.	(AWWA)
A.E. Romer, Boyle Engineering Corp., Newport Beach, Calif.	(AWWA)

* Nonvoting

† Liaison, nonvoting

(AWWA)
(AWWA)
(AWWA)
(AWWA)
(AWWA)
(ACPPA)
(AWWA)
(AWWA)

User Members

B.M. Bradish, City of Portsmouth, Portsmouth, Va.	(AWWA)
J. Galleher; San Diego County Water Authority, Escondido, Calif.	(AWWA)
J. Keith, Bureau of Reclamation, Denver, Colo.	(AWWA)
D. Marshall, Tarrant Regional Water District, Fort Worth, Texas	(AWWA)
V. Soto, Los Angeles Dept. of Water & Power, Los Angeles, Calif.	(AWWA)
D.A. Wiedyke, Clinton Twp., Mich.	(AWWA)

^{*} Nonvoting

AWWA MANUAL

M9

Chapter 1

Purpose and Scope

The use of concrete pressure pipe for conveying water and other liquids under pressure has dramatically increased in recent years. Its rugged construction and the natural corrosion resistance provided by embedment of the ferrous components in concrete or cement mortar offer the design engineer solutions to a wide range of structural and environmental problems (Figure 1-1).

The manufacture of four basic types of concrete pressure pipe are covered by the following American Water Works Association (AWWA) standards:

ANSI/AWWA C300	Standard for Reinforced Concrete Pressure Pipe, Steel-Cylinder Type
ANSI/AWWA C301	Standard for Prestressed Concrete Pressure Pipe, Steel-Cylinder Type

