External Corrosion—
Introduction to Chemistry and Control

AWWA MANUAL M27
Second Edition

American Water Works Association

Science and Technology

AWWA unites the drinking water community by developing and distributing authoritative scientific and technological knowledge. Through its members, AWWA develops industry standards for products and processes that advance public health and safety. AWWA also provides quality improvement programs for water and wastewater utilities.
Contents

List of Figures, v
List of Tables, vii
Introduction, ix
Acknowledgments, xi

Chapter 1 Importance of Controlling External Corrosion
1
Corrosion—Occurrence and Implications, 1
Economics of Corrosion Control, 5
References, 5

Chapter 2 Chemistry of Corrosion
7
Basic Electrochemistry of Corrosion, 7
Chemistry of Corrosion in Water Systems, 13

Chapter 3 Evaluating the Potential for Corrosion
23
Effects of the Chemical Environment on Common Water Pipe Materials, 24
Stray Currents, 35
References, 38

Chapter 4 Corrosion Protection of Buried Pipelines
41
Coatings, 41
Cathodic Protection, 43
Materials Selection, 51
Trench Improvement, 51
Protective Methods for Specific Pipe Materials, 51
References, 55

Chapter 5 Atmospheric Corrosion
57
Introduction, 57
How Metals Corrode in the Atmosphere, 57
Types of Corrosion That Can Be Expected, 60
Methods of Control, 61
Coating Evaluation, 65
References, 65

Chapter 6 Corrosion Control of Water Storage Tanks
67
Corrosion of Water Tanks, 67
Corrosion Prevention for Water Tanks, 68
Conclusion, 73
References, 74

Glossary, 75
Index, 79
Figures

1-1 Metals used in a typical gate valve, 3
1-2 Metals used at a typical water-service-to-main connection, 3
1-3 Metals used in a pipe-repair clamp, 4

2-1 The four basic elements of a galvanic corrosion cell: anode, cathode, electrolyte, and return current path, 8
2-2 Chemical reactions in a typical galvanic corrosion cell, 9
2-3 Galvanic cell formed with nonuniform electrolyte and electrodes of a single metal, 10
2-4 Creating a galvanic cell with a single piece of metal in a nonuniform electrolyte, 10
2-5 Contrasting conventional current flow with electron movement in a galvanic corrosion cell, 11
2-6 A typical electrolytic corrosion cell, 12
2-7 Direct-current transportation systems as a source of current causing electrolytic corrosion, 13
2-8 Measuring cell voltage with a voltmeter, 14
2-9 Concentration cell (crevice) corrosion, 18
2-10 Pitting corrosion, 18
2-11 Impingement corrosion, 19
2-12 Microbiologically influenced corrosion, 19
2-13 Stress, fatigue, and fretting corrosion, 20
2-14 Selective corrosion, 20
2-15 Atmospheric corrosion, 21

3-1 The 4-pin system of soil-resistivity testing, 26
3-2 Use of a single probe for testing soil resistivity, 26
3-3 Quad-box for testing resistivity of a water-saturated soil sample, 27
3-4 Testing soil pH, 27
3-5 Reinforced concrete cylinder pipe (AWWA C300-type pipe), 30
3-6 Prestressed concrete-lined cylinder pipe (AWWA C301-type pipe), 31
3-7 Prestressed concrete embedded cylinder pipe (AWWA C301-type pipe), 31
3-8 Bar-wrapped concrete cylinder pipe (AWWA C303-type pipe), 32
3-9 Testing for pipe-to-soil potential, 37
4-1 Cathodic protection system (galvanic cell using sacrificial anodes), 44
4-2 Details of a sacrificial anode installation, 45
4-3 Details of an impressed current system, 48
4-4 Corrosion caused by electrical discontinuity in a cathodically protected pipeline, 49
4-5 Corrosion of a metal structure in the vicinity of a cathodically protected structure, 50
4-6 Three methods for polyethylene encasement of ductile-iron pipelines, 54
5-1 Atmospheric corrosion, 58
5-2 The effects of orientation on atmospheric corrosion, 59
5-3 The effects of sheltering on atmospheric corrosion, 59
5-4 Crevice corrosion or pack rust, 60
5-5 Stress-related galvanic corrosion of fasteners, 61
5-6 Application of coating system, 64
6-1 Typical cathodic protection system for ground storage reservoir, 71
6-2 Typical cathodic protection system for elevated tank, 72
Tables

2-1 Galvanic series of selected metals and alloys (in seawater), 16
2-2 Typical soil corrosion cells resulting from nonuniform electrolyte conditions, 20
3-1 Soil-test evaluation for ductile-iron pipe (10-point system), 25
3-2 Soils grouped in order of corrosive action on steel, 29
3-3 Relationship of soil corrosion to soil resistivity, 29
3-4 Guidelines for use of AC pipe based on pH of acidic soils, 34
3-5 Corrosion guidelines for AC pipe for soluble sulfate in water and soils, 34
4-1 Magnesium anode factors, 46
5-1 Comparison of uniform corrosion rates of different metals in the atmosphere, 62
Introduction

Corrosion prevention and control is a practical science that allows relatively reliable predictions of corrosive conditions and, more important, effective prevention or mitigation of corrosion where economically appropriate. Faced with how best to install and protect a distribution system to minimize corrosion, today's water utility manager must evaluate the cost of corrosion protection compared with the extended life of the pipelines and appurtenances.

Both the technology and the economics involved in external corrosion control are complex, requiring a logical and well-considered approach by utility managers, operators, and consulting engineers, all of whom must be familiar with local conditions and available options. Not all environments are corrosive, not all materials corrode, and there is no single answer to all corrosion problems. In any given situation, the corrective measure selected must be both the most appropriate for the material and environment involved and economically feasible.

This manual is addressed primarily to the professional water utility operator, whose objective is to provide safe drinking water to the public. The text is intended to give the reader an understanding of how and why corrosion occurs, how the corrosion potential of an environment is evaluated, and how many of the proven corrosion prevention and control measures operate. For readers who believe a review of theoretical concepts of basic chemistry and basic electrical circuit theory is necessary, the relevant sections of *Basic Science Concepts and Applications* are recommended.

The general principles and examples presented in this manual are not intended to replace the services of a knowledgeable corrosion engineer. However, methodical application of the principles introduced—i.e., determining the cause of corrosion, analyzing its extent, and considering appropriate procedures for prevention or mitigation—will lay the foundation for an effective corrosion-control program that will benefit the public and the utility alike.

In the selection and application of corrosion monitoring/protection/mitigation materials, it is the responsibility of the operator to ensure that materials in contact with the water supply have been properly tested and certified in accordance with the standards and regulations relevant to the water utility involved.

This page intentionally blank.
Acknowledgments

This is the second edition of AWWA Manual M27, *External Corrosion—Introduction to Chemistry and Control*. Members of the Corrosion Control Committee involved in its development and approval included the following:

Franklyn W. Pogge, Chair, Kansas City Water Services Department, Kansas City, Mo.
Lake Barrett, Tnemec Company Inc., Kansas City, Mo.
Steven R. Piper, Sales Engineer, Oakville, Ontario, Canada
Nicholas G. Pizzi, Environmental Engineering & Technology, Twinsburg, Ohio
W. Harry Smith, Flora, Ill.
Robert P. Walker, Uni-Bell PVC Pipe Association, Dallas, Texas

Additional review and contributions by

David Prosser, American Concrete Pressure Pipe, Reston, Va.
This page intentionally blank.