Water Audits and Loss Control Programs

AWWA MANUAL M36
Third Edition
Contents

List of Figures, v
List of Tables, ix
Preface, xi
Acknowledgments, xiii

Chapter 1 Introduction: Auditing Water Supply Operations and Controlling Losses ... 1
 The Water Audit and Water Balance, 2
 The Importance of Water Audits and Loss Control, 3
 Getting Started, 4
 The Future of Water Supply Efficiency, 4
 References, 5

Chapter 2 Conducting the Water Audit ... 7
 The Water Audit, 8
 The Water Balance Calculation, 8
 Compiling the Top-down Water Audit Data, 10
 Summary, 63
 References, 63

Chapter 3 Identifying and Controlling Apparent Losses.................... 65
 How Apparent Losses Occur, 66
 Problems that Apparent Losses Create, 74
 Controlling Apparent Losses, 75
 References, 91

Chapter 4 Understanding Real Losses: The Occurrence and Impacts of Leakage ... 93
 The How and Why of Leakage, 94
 The Effect of Time on Leakage Loss, 96
 Characterizing Leakage Events, 98
 A Further Word on Customer Service Connection Piping Leakage, 100
 Water Pressure and Leakage, 101
 Locating and Quantifying Leakage, 102
 The Impact of Leakage, 105
 References, 108

Chapter 5 Controlling Real Losses: Leakage and Pressure Management .. 109
 Formulating a Leakage Reduction Target, 110
Figures

2-1 Water balance, 9
2-2 Water balance for County Water Company—2006 calendar year, 9
2-3a Identifying system boundaries for a water audit conducted on a wholesale transmission water supply system, 11
2-3b Identifying system boundaries for a treated water distribution system, 12
2-3c Identifying system boundaries for a discrete pressure zone or DMA, 12
2-4 Water audit worksheet: Top-down approach, 14
2-5 Detailed meter lag correction, 27
2-6 Calculation of water volume from variable-rate discharge, 30
2-7 Estimating landscape irrigation, 34
2-8 Customer meter flow recorder, 39
2-9 Determining the Lp distance for customer meter located at the curb stop, 59
2-10 Determining the Lp distance for customer meter located inside customer premises, 59
2-11 Determining the Lp distance for unmetered customer properties, 60
3-1 Graph produced from customer consumption meter data-logging showing minimum/average/maximum flow rates, 69
3-2 Graph produced from customer consumption meter data-logging showing percentage of time in given flow ranges, 69
3-3 Metered consumption data archival path, 71
3-4 Customer billing system overview flowchart for the City of Philadelphia, 77
3-5 Automatic meter reading flowchart for the City of Philadelphia, 78
3-6 Manual meter reading (non-AMR) flowchart for the City of Philadelphia, 79
3-7 Customer meter rotation process flowchart for the City of Philadelphia, 80
3-8 The four-pillar approach to the control of apparent losses, 84
3-9 Cost curve for meter replacement programs, 85
3-10 Economic balance for an apparent loss reduction solution, 85
3-11 Establishing an apparent loss control strategy, 87
4-1 Tank overflows are a component of real losses, 94
4-2 Large main break, 96
4-3 Small leak on customer service connection piping, 97
4-4 Leakage losses influenced by run time, 97
4-5 Leak noise signature of a leak showing increasing flow rate over time, 99
4-6 Leak correlators have become a standard pinpointing tool of the leak detection squad in many water utilities, 103
4-7 Leak noise loggers help to automate the leak survey process and provide consistent sounding capabilities for effective leak detection, 104
4-8 Distribution system flow metering and DMA design options, 106
5-1 The four-pillar approach to the control of real losses, 111
5-2 Components of leakage and appropriate intervention tools, 116
5-3 Economic unreported real losses for regular survey, 119
5-4 Preliminary design sketch for pressure management PRV chamber with bypass, 131
5-5 Determining the position of a leak using a leak correlator, 137
5-6 Use of mine leak detection technology in a 48-in. water main, 148
5-7 Repair clamps are commonly used to repair circumferential ruptures on distribution piping since they are quick to install and are highly durable, 162
5-8 Pressure and flow variations in a DMA without specific pressure management controls, 169
5-9 Reducing surges and excess pressure prevents the operating pressure range from reaching the point where the failure rate increases rapidly, 171
5-10 Pressure zones and DMA in the Philadelphia Water Department water service area, 174
5-11 Pressure control devices, such as PRVs, provide consistent outlet pressures, 175
5-12 Fixed outlet control mode, 177
5-13 Flow based dynamic modulation mode via a PRV combats high head loss in the distribution system and ensures a smooth pressure profile at the weaker points in the system, 178
5-14 Large nonhydraulic valve for remote node-based pressure modulation, 178
5-15 Typical pressure management installation supplying a DMA, 180
B-1 Standard IWA/AWWA water balance, 224
B-2 Modified IWA/AWWA water balance showing raw water withdrawal, utilization, and losses, 225
B-3 Modified IWA/AWWA water balance showing water allocation, raw water withdrawal, and customer usage and waste, 227
C-1 AWWA Water Loss Control Committee’s Free Water Audit Software—Instructions Worksheet, 231
C-2 AWWA Water Loss Control Committee’s Free Water Audit Software—Reporting Worksheet, 232
C-3 AWWA Water Loss Control Committee’s Free Water Audit Software—Reporting Worksheet, 233
C-4 AWWA Water Loss Control Committee’s Free Water Audit Software—Grading Matrix Worksheet, 234
C-5 AWWA Water Loss Control Committee’s Free Water Audit Software—Control Planning Guide Worksheet, 235
D-1 Supply/Demand trends for El Dorado Irrigation District, 244
D-2 Verification of system input volume through source meter tests, 246
D-3 Flowmeter data chain analysis, 247
D-4 Installation of advanced pressure controller and flowmeter, 249
D-5 Infrastructure leakage index comparison for EID, 250
D-6 IWA/AWWA standard water balance, 253
D-7 Real loss control strategies, 253
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-8</td>
<td>Component phases of leak occurrences</td>
<td>254</td>
</tr>
<tr>
<td>D-9</td>
<td>Mount Edward DMA, Dartmouth, Nova Scotia</td>
<td>255</td>
</tr>
<tr>
<td>D-10</td>
<td>ILI worldwide comparison</td>
<td>256</td>
</tr>
<tr>
<td>D-11</td>
<td>Regional ILI performance results</td>
<td>257</td>
</tr>
<tr>
<td>D-12</td>
<td>Philadelphia’s water supply/demand trend</td>
<td>260</td>
</tr>
</tbody>
</table>
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Water balance terms and definitions, 10</td>
</tr>
<tr>
<td>2-2</td>
<td>Metering locations in drinking water supplies, 12</td>
</tr>
<tr>
<td>2-3</td>
<td>Source water measuring devices for County Water Company, 19</td>
</tr>
<tr>
<td>2-4</td>
<td>Total water supply in million gallons for County Water Company (uncorrected), 19</td>
</tr>
<tr>
<td>2-5</td>
<td>Volume of water from own sources in mil gal for County Water Company (adjusted for meter error), 22</td>
</tr>
<tr>
<td>2-6</td>
<td>Changes in reservoir storage for County Water Company, 22</td>
</tr>
<tr>
<td>2-7</td>
<td>Number of customer accounts by meter size for County Water Company: January 1, 2006–December 31, 2006, 25</td>
</tr>
<tr>
<td>2-8</td>
<td>Total metered water consumption by category for County Water Company (uncorrected), 25</td>
</tr>
<tr>
<td>2-9</td>
<td>Sum of individual estimates of unbilled authorized consumption: unmetered, 32</td>
</tr>
<tr>
<td>2-10</td>
<td>Estimate of water volumes used by tank trucks for street cleaning, 33</td>
</tr>
<tr>
<td>2-11</td>
<td>Weighting factors for flow rates related to volume percentages for 5∕8-in. and ¾-in. water meters, 40</td>
</tr>
<tr>
<td>2-12</td>
<td>Meter testing data from a random sample of 50 meters for County Water Company, 40</td>
</tr>
<tr>
<td>2-13</td>
<td>Calculation of residential water meter error, 41</td>
</tr>
<tr>
<td>2-14</td>
<td>Volume percentages for large meters for County Water Company, 41</td>
</tr>
<tr>
<td>2-15</td>
<td>Meter test data for large meters for County Water Company, 42</td>
</tr>
<tr>
<td>2-16</td>
<td>Calculation of large water meter error, 42</td>
</tr>
<tr>
<td>2-17</td>
<td>Distorted customer consumption data due to customer billing adjustments triggered by the use of negative consumption values, 46</td>
</tr>
<tr>
<td>2-18</td>
<td>Utilizing separate fields for registered and billed consumption in the customer billing system, 48</td>
</tr>
<tr>
<td>2-19</td>
<td>IWA/AWWA Water Audit Method—Performance indicators, 53</td>
</tr>
<tr>
<td>2-20</td>
<td>Component values of the UARL calculation, 60</td>
</tr>
<tr>
<td>2-21</td>
<td>Standard unit values used for the UARL calculation, 61</td>
</tr>
<tr>
<td>3-1</td>
<td>Customer meter population demographics and metered consumption for County Water Company: January 1, 2006 – December 31, 2006, 81</td>
</tr>
<tr>
<td>3-2</td>
<td>Meter test data for large meters for County Water Company, 82</td>
</tr>
<tr>
<td>5-1</td>
<td>Eleven steps for preparing a sustainable leakage management program, 110</td>
</tr>
<tr>
<td>5-2</td>
<td>AWWA Water Loss Control Committee—leakage management target-setting guidelines, 112</td>
</tr>
<tr>
<td>5-3</td>
<td>Leakage flow rates for metallic piping systems, 159</td>
</tr>
<tr>
<td>Page</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>5-4</td>
<td>Leakage losses for circular holes under different pressures, 159</td>
</tr>
<tr>
<td>5-5</td>
<td>Leak losses for joints and cracks, 160</td>
</tr>
<tr>
<td>5-6</td>
<td>Drips per second and cups per minute converted to gpm, 161</td>
</tr>
<tr>
<td>5-7</td>
<td>Multipliers for bucket-and-stopwatch method, 161</td>
</tr>
<tr>
<td>6-1</td>
<td>Water loss control program planning matrix, 191</td>
</tr>
<tr>
<td>6-2</td>
<td>City of Philadelphia monthly water statistics report for June 2006, 194</td>
</tr>
<tr>
<td>7-1</td>
<td>Characteristics of large and small water systems in the United States, 198</td>
</tr>
<tr>
<td>D-1</td>
<td>City of Philadelphia annual water audit summary for the fiscal year ending</td>
</tr>
<tr>
<td></td>
<td>June 30, 2006, 262</td>
</tr>
</tbody>
</table>
Preface

Accountable Water Management—
Progressive Thinking and Solutions

North American water utilities have been highly successful in providing safe, reliable water supplies that have been a foundation for growth and prosperity. Benefiting from abundant natural resources, suppliers have succeeded in establishing high expectations for quality water service. The closing years of the 20th century, however, began to witness changes not seen before on the continent. The fastest growing cities in the United States are now located in sunbelt areas—even centered in deserts, such as Las Vegas and Phoenix. Limited water resources exist in these areas, therefore supplies must be developed and conveyed from distant water sources.

Multiyear periods of drought have begun to plague many areas of the United States. Water restrictions and shortages have become routine in many areas as a result of these circumstances, sometimes coupled with poor infrastructure reliability of individual water systems. For many water systems in the older parts of North America, aging infrastructure is exerting a toll as failures and high leakage rates compromise system efficiency and disrupt the reliable provision of services. Enhanced water quality and environmental protections along with funding constraints make development of new water resources more difficult, costlier, and less attractive than in prior eras.

In North America a growing focus on water conservation has evolved to address these challenges. Conservation efforts have been successful in stemming customer water demand via the use of water efficiency measures such as low flow toilets and showerheads. It is essential that these successful efforts continue because all water users have a responsibility to use water wisely. In the broader context of demand management, water suppliers also have a responsibility to wisely manage the valuable water resources under their purview. This tenet—the accountable and efficient management of water supplies by utilities—is the central focus of this manual.

While successfully delivering quality water supplies for up to two centuries, the North American water industry has often done so with uncertain accountability controls and high losses of both treated drinking water, mostly from leakage, and revenue caused by inaccurate metering, billing, and unauthorized consumption. Because the seemingly endless water resources of yesteryear are no longer available in many regions, water suppliers must manage water resources with a greater sense of stewardship and efficiency than in the past.

The first edition of this manual was published in 1991 and detailed the water audit method advocated by the California Department of Water Resources and adopted by the California-Nevada Section of the American Water Works Association (AWWA). The second edition was published in 1999, and provided relatively minor updates to the first edition. Perhaps the greatest strength of this manual has been the clear step-by-step instructions for data gathering to compile the water audit. This feature is retained in this third edition. However, the third edition includes a major advancement in water audit methodology, giving water utilities greater guidance in improving accountability and economically controlling water and revenue losses.

Historically, standard methods to audit water supplies and control losses were lacking throughout most of the world. In 2001, a survey of United States state and
regional water oversight agencies revealed that inconsistent definitions for water loss (most using the imprecise label “unaccounted-for” water) abound with few reliable water auditing or loss control measures in place. Regulatory requirements are unusually sparse on this issue in the United States more recently. Reliable data is being collected and along with many case study and anecdotal accounts, suggest that the occurrence of high loss water supplies is widespread.

Improvement in this state of affairs emerged in the 1990s. The United Kingdom’s National Leakage Initiative brought forth valuable research findings that were applied in new policies and practices leading to significant leakage reductions. From 1997–2000, AWWA participated on the Water Loss Task Force organized by the International Water Association (IWA). The Water Loss Task Force drew on the best practices included in the various water audit methods in use worldwide, including the United States, to assemble a best management practice methodology that features a set of rational terms and definitions, and an array of robust performance indicators that allows an objective gauging of loss levels. In 2003, AWWA’s Water Loss Control Committee published the report “Applying Worldwide Best Management Practices in Water Loss Control” in Journal AWWA. In this report, AWWA advocates the use of the IWA/WWA method and performance indicators.

This manual explains the IWA/WWA water audit methodology in a user-friendly manner and provides an overview of some of the best loss control techniques that can currently be implemented for a sustainable water loss control program. Chapter 1 provides a brief introduction while Chapter 2 gives detailed instruction on the water audit process. Chapter 3 describes ways to recoup missing revenues by controlling apparent (nonphysical) losses. Chapters 4 and 5 discuss the impacts of real (physical) losses which are largely leakage, and methods to control these losses. Chapter 6 gives guidance on the organizational steps a water utility can take to manage and sustain the water loss control program, while Chapter 7 offers valuable insights for small systems in managing their losses. A glossary of terms and definitions is also provided. Appendices include blank worksheets and forms, water resources considerations, a description of AWWA Water Loss Control Committee’s free Water Audit Software, and useful case study accounts from a spectrum of North American water utilities. For water utilities just getting started, the free Water Audit Software can be downloaded directly from the AWWA Web site and used to obtain a preliminary quantity of losses and their costs. This can be followed up by field measurements and investigations to gradually enhance and validate the water audit, steps well-described throughout this manual. Examples are included throughout the manual for the fictitious County Water Company, illustrating the means to compile the water audit and initiate control of both apparent and real losses.

Water utilities now have effective tools and methods to promote accountability and efficiency in their supply operations. Water utility managers will be called on to assess their inefficiencies and take corrective action, and the methods contained in this manual will help them do it.
Acknowledgments

This 3rd edition of the manual is a substantial revision of the previous M36 publica-
tions. It details significant developments and methods on water accountability and
proactive loss control. This edition presents innovations being diligently forwarded by
the American Water Works Association (AWWA) Water Loss Control Committee in coop-
eration with the Water Loss Task Force of the International Water Association (IWA).

This edition was written through the persistent, dedicated work of a standing
subcommittee. Members of this subcommittee included

J. Thornton, Chair, Thornton International, Sausalito, Mairipora, Brazil
B.P. Brainard, F.S. Brainard & Company, Burlington, N.J.
A. Chastain-Howley, Water Prospecting & Resource Consulting, Fort Worth, Texas
D.R. Gaff, Goff Water Audits, East Haven, Conn.
A.O. Lambert, ILMSS Ltd., North Wales, U.K.
J. Thornton, Chair, Thornton International, Sausalito, Mairipora, Brazil

This edition was developed from a preliminary draft prepared by M. Farley, Malcolm
Farley & Associates, Alvscot, Oxfordshire, U.K.

This manual was approved by the AWWA Water Loss Control Committee. Mem-
bers of the committee at the time of approval of this 3rd edition were as follows:

S. Arora, Halifax Regional Water Commission, Halifax, N.S., Canada
T.K. Bean, ADS Environmental Services, Tomball, Texas
S. Bowns, Hydromax USA, Florence, Ky.
B.P. Brainard, F.S. Brainard & Company, Burlington, N.J.
T. Brown, Health Consultants Inc., Houston, Texas
W.P. Bulloch, Utility Revenue Management Company, Houston, Texas
A. Chastain-Howley, Water Prospecting & Resource Consulting, Fort Worth, Texas
M.A. Dickinson, Alliance for Water Efficiency, Chicago, Ill.
G.R. Fricke, Health Consultants Inc., London, Ont., Canada
D.A. Gilles, American Water, Evansville, Ind.
D.R. Gaff, Goff Water Audits, East Haven, Conn.
A.M. Green, Advantica Inc., Loughborough, U.K.
S. Hamilton, Hydro Tec Ltd., Thorpe Underwood, U.K.
S.N. Hancey, Pollardwater.com, Redmond, Wash.
D. Heredia, Pure Technologies Ltd., Columbia, Md.
J.G. Hock, Westchester Joint Water Works, Airmont, N.Y.
K.S. Jeng-Bulloch, City of Houston, Houston, Texas
R. Kemple, American Water, Belleville, Ill.
In Memoriam

This 3rd edition of Water Audits and Loss Control Programs is dedicated to Louis F. Aiello III of West Virginia American Water, Charleston, W.V., who passed away shortly before the Water Loss Control Committee completed the final draft. We thank Lou for his work on the committee and recognize his commitment to his family and profession, and his contributions to this publication.

This manual was also reviewed and approved by the Distribution & Plant Operations Division and Conservation Division who had the following personnel at the time of review.

Distribution & Plant Operations Division:

M.L. Raimann, Chair, Cleveland Division of Water, Cleveland, Ohio
J.L. Anderson, CH2M Hill, Louisville, Ky.
C.C. Angadicheril, City of Fort Worth, Fort Worth, Texas
R.E. Harris, Pro-Ops Inc., Dallas, Texas
G.J. Kirmeyer, HDR Engineering, Bellevue, Wash.
W.C. Lauer, American Water Works Association, Denver, Colo.
Water Conservation Division:

L.V. Hathcock, Chair, Niagara Conservation Group, Durham, N.C.
D. Bennett, Southern Nevada Water Authority, Las Vegas, Nev.
D.E. Bracciano, Tampa Bay Water, Clearwater, Fla.
M.A. Dickinson, Alliance for Water Efficiency, Chicago, Ill.
L.V. Hathcock, chair, Niagara Conservation Group, Durham, N.C.
W.C. Lauer, American Water Works Association, Denver, Colo.
D.K. Pape, ICF Consulting, Washington, D.C.
Chapter 1

Introduction: Auditing Water Supply Operations and Controlling Losses

Community drinking water supply systems around the world have been instrumental in improving the human condition by providing essential water to promote public health and safety and good hygiene, and to serve as a basis for economic development. For hundreds of years, societies have constructed infrastructure to withdraw water from available sources, to treat it to an acceptable standard, and to distribute it to communities, typically through buried piping distribution systems. Yet, for all their success in quenching human needs, many drinking water utilities operate with considerable inefficiencies in terms of water and revenue losses. As the world grapples with the dilemma of a growing population but a finite amount of water, these inefficiencies need to be brought under a reasonable level of control. This manual offers water utilities a set of tools and approaches to instill accountability and control losses, including:

- Step-by-step procedures to conduct a water audit to assess the efficiency of the water distribution system and water accounting practices
- Worksheets and sample calculations for each step of the water audit
- Definitions and implications of apparent (nonphysical) losses and real (physical) losses
- Specific techniques to identify, measure, and verify all water sources, consumption, and losses
- A roadmap to control apparent losses in metering and billing operations and to recover missed revenues
- Steps to implement a leakage and pressure management program to control real losses and preserve source water resources