Water Resources Planning

Advocacy Communications Conferences Education and Training Science and Technology Sections

Second Edition

The Authoritative Resource on Safe Water®

Water Resources Planning

AWWA MANUAL M50

Second Edition

Science and Technology

AWWA unites the entire water community by developing and distributing authoritative scientific and technological knowledge. Through its members, AWWA develops industry standards for products and processes that advance public health and safety. AWWA also provides quality improvement programs for water and wastewater utilities.

MANUAL OF WATER SUPPLY PRACTICES—M50, Second Edition Water Resources Planning

Copyright © 2001, 2007 American Water Works Association

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information or retrieval system, except in the form of brief excerpts or quotations for review purposes, without the written permission of the publisher.

Disclaimer

The authors, contributors, editors, and publisher do not assume responsibility for the validity of the content or any consequences of their use. In no event will AWWA be liable for direct, indirect, special, incidental, or consequential damages arising out of the use of information presented in this book. In particular, AWWA will not be responsible for any costs, including, but not limited to, those incurred as a result of lost revenue. In no event shall AWWA's liability exceed the amount paid for the purchase of this book.

Project Manager and Technical Editor: Melissa Valentine Production: Claro Systems Manuals Coordinator: Beth Behner

Library of Congress Cataloging-in-Publication Data

Water resources planning. --2nd ed.
p. cm. -- (AWWA manual ; M50)
Preparation of the manual managed by William O. Maddaus.
Includes bibliographical references and index.
ISBN 1-58321-471-2
1. Water-supply--Planning. 2. Water consumption--Forecasting. 3. Water resources development. 4. Water-supply--United States--Planning--Case studies. I. Maddaus, William O.

TD345.W2685 2007 363.6'1--dc22

2006052622

Printed in the United States of America American Water Works Association 6666 West Quincy Avenue Denver, CO 80235

ISBN 1-58321-471-2

 (\mathbf{F})

Printed on recycled paper

Contents

List of Figures, vii		
List of Tables, xi		
Foreword, xiii Acknowledgments, xv		
 Chapter 2 Public Involvement for Water Resources Planning		
Chapter 3 Water Demand Forecasting41Forecasting Methods, 43Data Requirements, 47Identifying Water Use Patterns, 52Compiling a Demographic Database, 60Naturally Occurring and Programmed Conservation, 61Identify System Losses, 63Complete the Integrated Forecast Model, 63Sensitivity Analysis, 67Summary, 71Suggested Additional Readings, 72Supplement to Chapter 3: Summary of IWA Best Practices for Water Loss Control, 76Features of International Water Audit Methodology, 76Magnitude of Savings Potential, 77 Major Components of Effective Loss Control, 78		
Chapter 4 Water Rights and Policy		

The Public Trust Doctrine, 88 AWWA Water Policy, 90 Water Quality Impacts to Water Rights, 91 Suggested Additional Readings, 93
Chapter 5 Evaluation of Surface Water and Groundwater Sources 95
Surface Water, 95 Groundwater, 103 Aquifer Storage and Recovery Wells, 107 Conjunctive Use of Groundwater and Surface Wells, 112 Identification of Timing and Magnitude of New Source Development, 115 References, 117
Chapter 6 Evaluation of Other Sources 119
Conservation, 119 Reclaimed Water, 138 Project Siting, 146 Desalination, 151 Water Marketing and Transfers, 162 References, 168
Chapter 7 Water Quality 171
The Hydrologic Cycle and Water Quality, 171 Surface Water Quality, 172 Groundwater Quality, 172 Physical, Chemical, and Biological Components Influencing Water Quality, 173 Sources of Contaminant Loading in Water, 177 Water Quality Sampling and Monitoring, 181 Summary, 184 Suggested Additional Readings, 184
Chapter 8 Hydrologic Modeling 187
Hydrologic Models: What, Why, How, and When, 188 Hydrologic Models and Their Use, 191 Models and the Hydrologic Cycle, 195 Hydrologic Models: Data, Calibration, Sensitivity, and Errors, 211 Suggested Additional Readings, 226
Chapter 9 Regulatory Issues
Clean Water Act, 228 Drinking Water Quality Standards, 230 1986 Amendments, 235 1996 Amendments, 240 Summary, 246 References, 259
Chapter 10 Environmental Impact Analysis
Environmental Impact Planning, 261 Preparing Environmental Impact Documentation, 264 Information in Environmental Impact Documents, 268 Permits and Approvals in the Environmental Process, 270

Chapter 11	Watershed Management and Groundwater Protection 275
Ground	Water Source Protection, 276 water Source Protection, 286 aces, 297
	Economic Feasibility
Multiok Econom Econom Time au	ojective Decisions: Economics as One of Several Objectives, 299 nic Factors, 299 nic Variables: Costs and Benefits, 300 nd Discount Rate, 305 rison Methodologies, 308
Chapter 13	Integrated Resource Planning
Plan Ou Formin Evaluar Selectir	ew of the IRP Process, 316 atline, 322 g Resource Combinations, 327 ting Resource Combinations, 330 ng and Implementing a Plan, 334 aces, 339
Chapter 14	Case Studies
Proj Case St Case St Case St Plar Case St Case St Case St Case St Plar Case St Plar Case St	 nudy #1: City of Newport News, VA and the King William Reservoir ect, 342 nudy #2: Case Study for Regional Water Planning in Texas, 345 nudy #3: Portland, Oregon, Regional Water Supply Plan, 347 nudy #4: City of Colorado Springs, Colorado, Integrated Resource n, 348 nudy #5: Denver, Colorado, Metropolitan Area, 349 nudy #6: Kentucky–American Water Company's Integrated Resource n, 353 nudy #7: Wichita, Kansas, Integrated Resource Plan, 355 nudy #8: Ware Creek Reservoir, Virginia, 356 nudy #9: Southern Nevada Water Authority Integrated Resource n, 357 nudy #10: Eugene, Oregon, Water and Electric Board Water Supply n, 361
Appendix A	Preliminary Cost Guide for Water Supply Dams 365
Establi Profile Earth F	ng the Appropriate Dam Type, 365 shing Dam Profile Layout, 366 Layout and Basis for Estimating Quantity, 367 Fill Dam Assessment—Preliminary Layout and Opinion of Cost, 370 Dam—Opinion of Cost, 372
	A White Paper From the American Water Works Association Vater Protection (approved April 11, 1997)
The Roa Develop	ent of Principles, 373 ad to a Source Water Protection Program, 374 ping Resources For Source Water Protection, 375 nendations, 375

Appendix C State Wellhead and Source Water Protection Contact	
List $\dots \dots \dots$	7
Index, 379	
List of AWWA Manuals, 391	

Figures

- 1–1 Water resources planning process, 3
- 3–1 Information flow in forecast model, 42
- 3–2 Single family residential—typical seasonal index, Mesa, Ariz., area, 55
- 3–3 Effect of weather on consumption, typical to Mesa, Ariz., area, 56
- 3–4 Illustration of single family residence water use model components, water utility in Tualatin Valley Water District, Beaverton, Ore., 59
- 3–5 Illustration of monthly forecasting with conservation; water utility in Tualatin Valley Water District, Beaverton, Ore., 64
- 3–6 Total historical forecasts with and without conservation for rapidly growing utility in the Phoenix, Ariz., area (includes system water losses), 65
- 3–7 Total and indoor water history and projection, excluding water losses, including natural and programmed conservation, for rapidly growing utility in Phoenix, Ariz., area, 66
- 3–8 Forecasting sensitivity related to joint probability of water use and household projections, 70
- 3S-1 The International Standard Water Audit Format, 76
- 5–1 Safe yield of on-stream sites, 100
- 5–2 Safe yield of pumped-storage sites, 101
- 6–1 Mean daily per capita water use, 12 study sites, 124
- 6–2 Indoor per capita use percent by fixture, 12 study sites, 125
- 6–3 Determine market penetration, 129
- 6–4 Example of delay downsize facility based on demand forecast accounting for conservation effects, 130
- 6–5 Benefit–cost analysis methodology, 132
- 6-6 Demand forecast with and without water conservation, 133
- 6–7 Wastewater hydrograph, 142
- 6–8 Supply sized for average month demand, 143
- 6–9 Supply sized for daily demand, 144
- 6–10 Integrated/satellite system layout, 149
- 6–11 Basic electrodialysis unit (adopted from USDI, 1982), 154
- 6–12 Typical regulatory compliance plan procedure, 161

- 7–1 Point source pollution, 179
- 7–2 Nonpoint source pollution, 180
- 8–1 Model: activities sequence and utilities, 190
- 8–2 Data–decision hierarchy, 192
- 8–3 Hydrologic cycle, 196
- 8–4 Schematic of hydrologic cycle, 198
- 8–5.1 Developing successful models, step 1: Determine need for a model (Is a model needed?), 219
- 8–5.2 Developing successful models, step 2: Select a model, 220
- 8-5.3a Developing successful models, step 3: Build a model, 221
- 8-5.3b Developing successful models, step 3: Build a model (continued), 222
- 8-5.3c Developing successful models, step 3: Build a model (continued), 223
- 8–5.4 Developing successful models, step 4: Calibrate the model, 224
- 8-5.5 Developing successful models, step 5: Perform sensitivity analysis, 225
- 8–5.6 Developing successful models, step 6: Use a model, 225
- 9–1 Permit process flowcharts, 231
- 11–1 Watershed protection plan development and implementation flowchart, 277
- 11–2 Watershed area (USEPA, 1997b), 293
- 11-3 Watershed area—segmented for assessments (USEPA, 1997b), 294
- 13–1 Integrated resource planning, 318
- 13–2a Integrated resource planning–why?, 319
- 13–2b Integrated resource plan, 321
- 13–3 Water resources management planning study framework, 321
- 13–4 Example of service reliability probability distribution for a specific future year, 333
- 13–5 Consideration and ranking of many alternatives is a feature of integrated resource planning, 336
- 13–6 Determining the optimum (least-cost) level of water supply reliability, 337
- 13–7 Effect of environmental costs on water supply reliability, 338
- A–1 Dam profile layout, 367
- A–2 Profile layout for estimating quantity, 368
- A–3 Typical RCC dam geometry, 368

A–4 RCC unit cost, 369

A–5 Earth fill unit cost, 371

This is a preview of "AWWA M50-2007". Click here to purchase the full version from the ANSI store.

This page intentionally blank

Tables

3–1	Example of water demands for raw water customers with per capita use— San Francisco Bay area agency, 52	
3–2	Example of baseline demand for treated water customers, disaggregated by customer type and land use, 53	
3S-1	City of Philadelphia 1991 Water Audit; Summary Performance Results, 77	
4–1	Summary of water rights of the 50 states, 83	
4-2	Comparison of riparian and appropriation water rights systems, 86	
6–1	Overview of benefits, 121	
6–2	Energy used to deliver water, 122	
6–3	How water system elements are affected by consumption, 122	
6–4	How wastewater system elements are affected by conservation, 123	
6–5	Characteristics of significant CI categories in five participating agencies, 126	
6–6	Efficiency benchmarks for schools, 127	
6–7	Unit water savings of conservation measures, 131	
6–8	Examples of drought plan conditions, 137	
6–9	Example industrial wastewater constituents ^{*, 139}	
6–10	Reclaimed water use by treatment level, 141	
6–11	Water reclamation plant flexibility and reliability requirements, 148	
6–12	Representative water reclamation capital costs, 150	
6–13	Desalination process chart, 152	
6–14	Pretreatment methods for desalination systems, 152	
7–1	Water states and qualitative characteristics, 178	
7–2	Summary of the minimum parameters to be analyzed in water quality tests (Bloetscher, et al., 2005; AWWA, 2003), 184	
8–1	Interception percentages for various crops and forests, 201	
8–2	Representative values of vegetation parameter "a", 205	
8–3	Representative values of infiltration capacities, 206	
8–4	Groundwater terms, definitions, and representative values of parameters, 207	
9–1	Removal–inactivation as a function of raw water contamination, 237	

- 9–2 National Primary Drinking Water Regulations (current contaminant listings can be found at http://www.epa.gov/safewater/contaminants/index.html), 248
- 9-3 National Secondary Drinking Water Regulations, 1998, 259
- 11–1 Categories of water quality threats, 282
- 11–2 Threat assessment, 284
- 11–3 Number of public water systems in the United States, 288
- 11–4 Population served by public water system type in the United States, 288
- 11–5 Community water systems by source in the United States, 288
- 11–6 Advantages and disadvantages of WRP delineation methods, 290
- 13–1 Utility experience with IRP, 317
- 13–2 Comparison of traditional supply planning and IRP, 322
- 13–3 Model drought demand management plan, 328
- 13–4 Evaluation of resource sequences, 335
- A–1 Considerations for selecting dam type, 366
- A-2 Embankment dam alternative layout selection factors, 370

Foreword

This publication is the second edition of the American Water Works Association (AWWA) Manual M50, *Water Resources Planning*, originally published in 2001. The manual provides information on how to develop a plan for new water supplies to accommodate projected future water demands.

This second edition significantly enhances the basis of water resource planning provided in the first edition. Additions and improvements include:

Emphasizes the role of successful public involvement in water resource planning with a new chapter on the topic.

Expanded treatment of water losses in the Water Demand Forecasting chapter along with examples.

New section on conjunctive use as a water source option.

Update on drinking water regulations.

New section on Native American Consultation in environmental impact analysis.

Additional case studies on Integrated Resource Planning.

The impetus for M50 stems from the fact that many of the water supplies serving the current population were developed decades ago. During the 1930s through 1960s, the US Bureau of Reclamation, the US Army Corps of Engineers, some state agencies, and water wholesalers actively developed water projects. Environmental regulations were minimal, federal and state money was relatively plentiful, and the public was not greatly involved in water supply decision making. All this changed in the 1970s. Since then, we have seen

- heightened public interest in water resources planning (WRP)
- extensive promulgation of environmental regulations
- greater scrutiny of large public works projects
- an emerging understanding of water conservation, efficiency, and demand management benefits
- a better understanding of how water supply projects affect the environment (and our ability to model the impacts)

As a result of these changes, far fewer water resource projects have been built since the early 1980s.

The traditional mission of AWWA member utilities has been to distribute treated drinking water from sources often developed by predecessors or outside entities. In most cases, the utility's role is now being expanded to include the development of major new water supplies. As noted, limited source of supply development over the past two decades has been influenced by expanded environmental regulations. These regulations have constrained new source development projects, while creating a concentrated focus on capital-intensive treatment process and water quality enhancement upgrades. Increased demand for new sources of supply can be seen in every region of the country. This manual is designed to provide information, previously unavailable through AWWA, to help member utilities meet their customers' needs and the demands of the marketplace in an effective, organized, and responsive fashion. Water resource planning for potable water supply is a very broad topic. No single manual could cover all possible technical topics needed by resource planners. Issues range from estimating future water demand to evaluating possible new sources of water and dealing with expanding environmental regulations. One method for preparing a water resources plan is integrated resource planning (IRP). Developed in the 1990s, IRP shows promise as a way to tie together all the loose ends through a planning process that usually results in a reason-based, costeffective, and environmentally sound plan the public can support. But this manual discusses much more than IRP; it provides utilities with substantial detail on how to develop and evaluate the information they need to make informed decisions on the best time and method to expand water supplies.

It should be noted that a standard exists that covers the essential requirements for the effective protection of source waters, AWWA Standard G300, *Source Water Protection*. Successful source water protection programs may vary widely in their details, but it is a premise of this standard that successful programs share six fundamental elements:

- 1. A source water protection program vision
- 2. Source water characterization
- 3. Source water protection goals
- 4. Source water protection action plan
- 5. Implementation of the action plan
- 6. Periodic evaluation and revision of the entire program

Within this generalized framework, individual utilities may establish and maintain source water protection programs that account for their unique local conditions, incorporate the interests of local stakeholders, and reflect sustainable long-term commitments to the process by all parties.

The AWWA Water Resources Planning and Management Committee, which helped prepare this manual, welcomes input on its content and usefulness. Planning is an ever-changing process. Techniques are being refined, and new techniques are being developed and gaining acceptance in the planning and engineering marketplace. Subsequent versions of manual M50 will provide an effective framework for WRP for the beginning of the 21st century.

Acknowledgments

The first and second editions of AWWA Manual M50 were authorized by the Water Resources Planning and Management Committee. Preparation of the manual was managed by William O. Maddaus. The authors were as follows:

Chapter 1, Introduction	William O. Maddaus, Maddaus Water Management
Chapter 2, Public Involvement for Water Resources Planning	Wendy Nero and Liz Barksdale, CH2M-Hill Terry Cole, Brown and Caldwell Michelle K. Robinson, Tampa Bay Water Nancy Howard, Newport News Waterworks
Chapter 3, Water Demand Forecasting	Jack Weber, Weber Analytical
Chapter 4, Water Policy	Kenneth R. Wright, Wright Water Engineers Brad B. Castleberry, Lloyd, Gosselink, Blevins, Rochelle, Baldwin and Townsend, P.C.
Chapter 5, Evaluation of Surface and Groundwater	David B. Campbell, Schnabel Engineering Associates Dr. Najmus Saquib, WRIME, Inc. Mark V. Lowry, Turner Collie & Braden
Chapter 6, Evaluation of Other Sources	James A. Cathcart, HDR Engineering, Inc. David L. Roohk, HDR Engineering, Inc. James A. Yost, West Yost & Associates Lisa Maddaus, Brown and Caldwell Bill Hoffman, City of Austin
Chapter 7, Water Quality	Janine B. Witko, Black & Veatch Rosemarie Short, Malcolm Pirnie, Inc.
Chapter 8, Hydrologic Modeling	Dr. Najmus Saquib, WRIME, Inc.
Chapter 9, Regulatory Issues	James A. Cathcart, HDR Engineering, Inc. Ronald Sharpin, Massachusetts Department of Conservation and Recreation
Chapter 10, Environmental Impact Analysis	<i>Gwen Buchholz</i> , CH2M Hill <i>Nancy Howard</i> , Newport News Waterworks

Chapter 11, Watershed Management and Groundwater Protection	Ronald Sharpin, Massachusetts Department of Conservation and Recreation Steven R. Roy, GeoSyntec Consultants, Inc.
Chapter 12, Economic Feasibility	Daniel B. Bishop, Bishop Consulting
Chapter 13, Integrated Resource Planning	William O. Maddaus, Maddaus Water Management
Chapter 14, Case Studies	Gary S. Fiske, Gary Fiske and Associates

A special thank you to Fred Bloetcher for his in-depth review of this manual. This manual was developed by the AWWA Water Resources Planning and Management Committee. The membership at the time it approved this manual was as follows:

Alison Adams, Tampa Bay Water, Clearwater, Fla. Aziz Ahmed, Malcolm Pirnie Inc., Phoenix, Ariz. John Andrew, California Bay-Delta Authority, Department of Water Resources, Sacramento, Calif. D.B. Campbell, Schnabel Engineering Associates, West Chester, Pa. Max Castaneda, Corpus Christi, Texas Brad Castleberry, Lloyd Gosselink et al., Austin, Texas J.A. Cathcart, HDR Engineering Inc., Lake Forest, Calif. O.L. Chen, Olivia Chen Consultants Inc., San Francisco, Calif. W.Y. Davis, Chair, CDM, Carbondale, Ill. K.E. Dennett, University of Nevada, Department of Civil Engineering/MS 258, Reno, Nev. Nass Diallo, Las Vegas Valley Water District, Las Vegas, Nev. M.A. Dickinson, California Urban Water Conservation Council, Sacramento, Calif. D.D. Dunn, HDR Engineering Inc., Austin, Texas D.F. Edson, Prism Environmental Inc., Westborough, Mass. Scott Forbes, Paller-Roberts, Westchester, Calif. T.L. Frederick, Rivanna Water & Sewer Authority, Charlottesville, Va. E.A. Harrington, American Water Works Association, Denver, Colo. Uli Kappus, Parsons, Denver, Colo. Paula Kehoe, SF Public Utilities Commission, San Francisco, Calif. J.C. Kiefer, CDM Inc., Carbondale, Ill. M.V. Lowry, Turner Collie & Braden Inc., Austin, Texas W.O. Maddaus, Maddaus Water Management, Alamo, Calif. Saquib Najmus, WRIME Inc., Sacramento, Calif. P.E. Peterson, Malcolm Pirnie Inc., Newport News, Va. Perri Standish-Lee, Black & Veatch, Sacramento, Calif. Lorna Stickel, Portland Water Bureau, Portland, Ore. Alyson Watson, RMC, San Francisco, Calif. J.A. Whitford, HNTB Corporation, Indianapolis, Ind. Ray Yep, Santa Clara Valley Water District, San Jose, Calif.

T.T. Yurovsky, SRT Consultants, San Francisco, Calif.

AWWA MANUAL M50

Chapter

Introduction to Water Resources Planning

According to a recent report by Johns Hopkins University, nearly half a billion people around the world face water shortages today. By 2025 the number will increase fivefold to 2.8 billion people—35 percent of the world's projected total of 8 billion people.

Although 70 percent of the Earth's surface is water (mostly in oceans), only about 3 percent of all water on Earth is fresh water. Because much of this fresh water is locked up in ice caps and glaciers, only about 1 percent of all fresh water is reasonably accessible for use. Only about 0.001 percent of the world's total supply of water is considered easily accessible for human use.

The world's population, now at nearly 6 billion, is increasing by about 80 million per year. As of 1995, 31 countries, with a combined population of 458 million, faced either water stress or water scarcity. Although the United States does not currently face critical shortages, there are problem areas:

- Overall, groundwater is being used 25 percent faster than it is being replenished. In particular, the Ogallala aquifer, which underlies parts of six states and irrigates 6 million hectares (14,826,300 acres), has been overexploited and, in some areas, half its available water has been withdrawn.
- The Colorado River, which flows through several southwestern states, has fed agriculture and enabled rapid growth of desert cities such as Las Vegas, Phoenix, and San Diego. Demands have so drained the river that it no longer consistently reaches its mouth in Mexico's Gulf of California. The river's overuse has been a source of contention between the United States and Mexico.

These are merely two examples of a growing water resource crisis. Water wars are being fought in the humid southeastern United States. Restrictive withdrawal policies are being applied to groundwater and surface water sources in nearly every