Reverse osmosis (RO) membranes have been used in water reuse since the 1960s; however, the use of membranes in full-scale reuse applications has changed dramatically. The goal for membrane facilities in water reuse applications is finding the balance between cleaning frequency and chemical and energy costs. This manual presents a comprehensive description of the issues related to applying membrane technologies in water reuse projects. In addition, this manual devotes an entire chapter to case studies to showcase a variety of real world applications.
Membrane Applications for Water Reuse

First Edition
Contents

Figures, ix
Tables, xiii
Acknowledgments, xvii
Preface, xxi
Abbreviations, xxiii

Chapter 1 Development of Water Reuse Practices ... 1
 History of Water Reuse, 1
 Terminology, 1
 Unplanned Water Reuse, 2
 Planned Water Reuse, 2
 The Role of Membranes in Water Reuse, 3
 How to Use This Manual, 4
 References, 6

Chapter 2 Planning for Reuse Applications ... 7
 Reuse Applications, 7
 Nonpotable Reuse, 7
 Potable Reuse, 9
 Treatment Options for Water Reuse, 10
 Effectiveness of Treatment, 11
 Residuals, Disposal, and Regulatory Requirements, 11
 Flow Equalization and Storage Requirements for Nonpotable Reuse, 14
 Environmental Impacts, 14
 Legal and Institutional Issues, 15
 Regulatory Requirements and Permitting, Including Future Regulatory Impacts, 15
 Public Education and Outreach Programs, 15
 References, 16

Chapter 3 Water Reuse Guidelines and Regulations... 17
 World Health Organization Guidelines, 17
 National Guidelines, 20
 Reuse Requirements, 43
 Guidelines for Other Countries, 45
 References, 48

Chapter 4 Source and Treated Water Quality ... 51
 Wastewater Treatment, 51
 Wastewater Effluent Quality, 52
 Specific Wastewater Quality Parameters, 53
 Industrial Reuse, 57
 Agricultural Reuse, 60
 Water Supply Augmentation, 61
 Augmentation of Indirect Potable Supplies, 62
 Direct Potable Reuse, 63
Chapter 5 Membrane Process Treatment Facility Design

Pretreatment or Feedwater Conditioning for Membrane Treatment Processes, 69
Screening for Removal of Debris and Large Solids, 72
Removal of Chemicals Incompatible with Membrane Materials, 74
Foulant, Suspended Solids, and Particulates Removal, 76
Coagulation–Flocculation, 77
Clarification, 78
Dissolved Air Flotation, 78
Media Filtration, 79
Microfiltration–Ultrafiltration as PreTreatment, 80
Other Pretreatment Processes for Suspended Solids Removal, 80
Controlling Temperature, 80
pH, 80
Dissolved Ionic Species that Require Preconditioning, 80
Oxidation and Reduction Processes, 81
Softening, 81
Degasser, 83
Controlling Biological Fouling, 84
Chlorination, 85
Micellar-Enhanced Membrane Separation, 87
Optimization of Upstream Biological Wastewater Treatment, 87
MF–UF Design Considerations, 88
MF/UF Design Considerations, 89
MF–UF Filtrate Quality Requirements, 89
MF–UF Filtrate Quality Requirements for Water Reuse, 90
Impact of Feedwater Quality on Pretreatment and MF–UF System Design, 91
MF–UF Equipment, 92
Reverse Osmosis–Nanofiltration, 95
Impact of Feedwater Quality on Pretreatment and NF–RO System Design, 98
Post-Treatment, Stabilization, and Disinfection, 111
Stabilization, 112
Treatment Requirements, 114
Treatment Processes, 115
Advanced Oxidation Systems, 117
Design Considerations, 121
Water Quality Impacts, 121
References, 122

Chapter 6 Operations

Membrane System Data Collection and Analysis, 125
Operating Data, 127
Membrane Integrity Test, 129
Heterotrophic Plate Count, 131
Operational Considerations, 131
Membrane Cleaning and Flux Recovery, 135
Integrity Testing, 141
Membrane Storage, 143
<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>Residuals Management</th>
<th>.. 149</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residuals Management for Low-Pressure Membranes, 150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuals Management Techniques, 150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentrate Management for High-Pressure Membranes, 152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Issues Related to Concentrate Disposal, 153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health and Environmental Issues, 154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost and Energy Issues, 154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentrate Disposal Options, 155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Research, 164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulatory Issues, 165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>References, 169</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>Cost of Treatment</th>
<th>.. 173</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summarizing Project Costs, 173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development of Construction Cost Model, 175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributing Factors to Capitol Costs, 175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development of an O&M Cost Model, 180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of Water, 184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example Cost Estimates, 185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>References, 187</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>Case Studies</th>
<th>.. 189</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Study: The Groundwater Replenishment System, 189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Photos, 194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case Study: Broad Run Water Reclamation Facility, 197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Description, 198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Membrane System Design Summary, 198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Costs, 199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conclusions, 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Photos, 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case Study: Big Spring Raw Water Production Facility – Colorado River Municipal Water District, 202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Description, 202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse Osmosis Feedwater Pretreatment, 203</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Quality, 204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Costs, 204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Photos, 205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case Study: Edward C. Little Water Recycling Facility, 206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Description, 207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated Water Quality Produced, 210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Costs, 211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation and Maintenance Costs, 211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case Study: Singapore NEWater Facilities, 211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singapore’s First Initiative on Recycling: Industrial Water, 211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The NEWater Study, 212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Education, 213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full-Scale Implementation of NEWater, 213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Photos, 215</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case Study: Bundamba 1A Advanced Water Reclamation Facility – Southeast Queensland Water, 218
Water Quality, 219
Operational Performance, 222
Case Study: Gibson Island Advanced Water Treatment Plant – South East Queensland Water, 225
Plant Description, 225
Capital Costs, 227
Conclusion, 228
Project Photos, 228
References, 230
Case Study: Luggage Point Advanced Water Treatment Plant – Southeast Queensland Water, 231
Influent Characteristics and Treated Water Quality Requirements, 231
Treatment Process, 231
Plant Performance Relative to Treated Water Requirements, 238
Costs, 238
Summary, 238
References, 238
Case Study: CAPCO Industrial Wastewater Reclamation Facility, 239
Wastewater Reclamation System Description, 240
Economic Analysis for the Reuse Project, 240
Full-scale Implementation, 243
A Brief Review of the 13 Years of Operation, 243
References, 245

Chapter 10 Future Technology Trends and Contaminants of Emerging Concern.... 247
Advances in Low-Pressure Membranes, 247
Ceramic Membranes, 248
Universal MF–UF Membrane Skid, 249
Advances in Reverse Osmosis Membrane Cleaning, 249
New Membrane Materials for Desalination, 251
Novel Membrane Processes for Desalination, 254
Contaminants of Emerging Concern, 257
References, 267

Appendix A The Groundwater Replenishment System Design Criteria and Water Quality Tables, 275
Appendix B Broad Run Water Reclamation Facility Design Criteria and Water Quality Tables, 279
Appendix C Big Spring Raw Water Production Facility Design Criteria and Water Quality Tables, 281
Appendix D Edward C. Little Water Recycling Facility Design Criteria and Water Quality Tables, 283
Appendix E Singapore NEWater Facilities Process Design Criteria and Water Quality Tables, 289
Appendix F Western Corridor Water Recycling Scheme Design Criteria and Water Quality Tables, 295

Appendix G CAPCO Industrial Wastewater Reclamation Facility Design Criteria and Water Quality Tables, 307

Index, 309

AWWA Manuals, 319
Figures

2-1 Summary of water reuse applications in the United States, 8
4-1 Treatment technologies to achieve desired levels of reclaimed water quality, 52
5-1 Water reuse membrane treatment hierarchy, 70
5-2 Typical automatic backwashing screen used in microfiltration–ultrafiltration systems, 73
5-3 Automatic backwashing disc (left) and wound microfiber cassette filters (right), 74
5-4 Hillsboro Beach, Fla., pellet lime softener installation, 82
5-5 Integrated precipitative membrane treatment, 83
5-6 Ultrafiltration membrane surface showing pores, 88
5-7 Microfiltration–ultrafiltration filtration modes, 89
5-8 Principle of reverse osmosis, 96
5-9 Rejection capabilities of various membranes and required operating pressure, 97
5-10 Scanning electron microscope image of a fouled membrane used to treat secondary effluent. Severe fouling by calcium aluminum silicates is seen, 101
5-11 Microfiltration (foreground) and reverse osmosis (RO; background) installation at the Bundamba advanced water reclamation plant in Australia. The RO membranes are 18 in. in diameter, 105
5-12 Reverse osmosis trains at Changi NEWater Facility, Singapore, 107
5-13 A three-stage reverse osmosis train, 108
5-14 Energy-recovery device in a reverse osmosis system that recovers the energy in the concentrate and reuses it to boost the second-stage feed pressure, 109
5-15 Flows and pressures through each stage of a reverse osmosis train, with and without an energy-recovery device, 109
5-16 Liqui-cel membrane contactor, 116
5-17 Clearwater, Fla., groundwater replenishment process flow diagram, 118
6-1 Illustration of the importance of maintaining sufficient start pressures for a membrane integrity test, 129
6-2 Particulate and debris collected within the cartridge filter housing (left) and on the cartridge filters (right), 134
6-3 Scanning electron microscopy images of a clean reverse osmosis membrane surface (left) and one containing silicate scale (right), 135
6-4 Changing reverse osmosis system performance parameters in response to a membrane fouling event, 136
6-5 Ratio of specific flux at the tail-end stage to the total system specific flux. Note the declining ratio while the overall system specific flux remains unchanged, 136
6-6 Scanning electron microscopy images of a membrane hollow fiber (left) and accumulated foulant on the outside fiber surface (right), 137
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-7</td>
<td>Example of transmembrane pressure increases versus time for consecutive cleaning intervals. Note the baseline, declining, and restoration of membrane permeability are reflective of potential irreversible fouling or chemical cleaning effectiveness, 139</td>
</tr>
<tr>
<td>6-8</td>
<td>Restoration of reverse osmosis membrane flux to initial baseline permeability after chemical cleaning, 141</td>
</tr>
<tr>
<td>7-1</td>
<td>Mechanical vapor compression brine concentrator, 163</td>
</tr>
<tr>
<td>7-2</td>
<td>Mechanical vapor compression crystallizer, 163</td>
</tr>
<tr>
<td>8-1</td>
<td>Nonpotable reuse treatment plant construction cost for a microfiltration-based facility, 176</td>
</tr>
<tr>
<td>8-2</td>
<td>Potable reuse treatment plant construction cost for a microfiltration–reverse osmosis-based facility, 177</td>
</tr>
<tr>
<td>8-3</td>
<td>Typical nonpotable reuse treatment plant operations and maintenance cost breakdown for a microfiltration-based facility, 181</td>
</tr>
<tr>
<td>8-4</td>
<td>Typical potable reuse treatment plant operations and maintenance cost breakdown for a microfiltration–reverse osmosis-based facility, 181</td>
</tr>
<tr>
<td>8-5</td>
<td>Nonpotable reuse treatment plant cost of water for a microfiltration-based facility, 184</td>
</tr>
<tr>
<td>8-6</td>
<td>Potable reuse treatment plant cost of water for a microfiltration–reverse osmosis-based facility, 185</td>
</tr>
<tr>
<td>9-1</td>
<td>Groundwater Replenishment System components, 190</td>
</tr>
<tr>
<td>9-2</td>
<td>Groundwater Replenishment System process flow diagram and sampling points, 191</td>
</tr>
<tr>
<td>9-3</td>
<td>Aerial view of the Groundwater Replenishment System and adjacent Orange County Sanitation District facility, 194</td>
</tr>
<tr>
<td>9-4</td>
<td>Groundwater Replenishment System facility entrance, 195</td>
</tr>
<tr>
<td>9-5</td>
<td>Microfiltration system, 195</td>
</tr>
<tr>
<td>9-6</td>
<td>Reverse osmosis treatment trains, 196</td>
</tr>
<tr>
<td>9-7</td>
<td>Ultraviolet light–advanced oxidation process treatment facility, 196</td>
</tr>
<tr>
<td>9-8</td>
<td>Process schematic for the Broad Run Water Reclamation Facility, 198</td>
</tr>
<tr>
<td>9-9</td>
<td>Membrane bioreactor tanks and pipework, 200</td>
</tr>
<tr>
<td>9-10</td>
<td>Granular activated carbon contactors and pipework, 201</td>
</tr>
<tr>
<td>9-11</td>
<td>Ultraviolet light reactors, 201</td>
</tr>
<tr>
<td>9-12</td>
<td>Process schematic for the Colorado River Municipal Water District raw water production facility in Big Spring, Texas, 203</td>
</tr>
<tr>
<td>9-13</td>
<td>Microfiltration system, 205</td>
</tr>
<tr>
<td>9-14</td>
<td>Reverse osmosis system, 205</td>
</tr>
<tr>
<td>9-15</td>
<td>Process schematic of the Edward C. Little Water Recycling Facility, 208</td>
</tr>
<tr>
<td>9-16</td>
<td>Ozone injection system, 209</td>
</tr>
<tr>
<td>9-17</td>
<td>Phase III CMF units, 209</td>
</tr>
<tr>
<td>9-18</td>
<td>Flow schematic of NEWater factories, 214</td>
</tr>
<tr>
<td>9-19</td>
<td>Zeeweed ultrafiltration at Bedok NEWater Factory, phase 1, 215</td>
</tr>
<tr>
<td>9-20</td>
<td>Microza microfiltration at Bedok NEWater Factory, phase 2, 215</td>
</tr>
</tbody>
</table>
9-21 Large-diameter (16-in.) reverse osmosis trains at Bedok NEWater Factory, phase 2, 216
9-22 Memcor CMF-S system at Kranji NEWater Factory, phases 1 and 2, 216
9-23 Reverse osmosis units at Kranji NEWater Factory, phases 1 and 2, 217
9-24 Process flow diagram for Bundamba advanced wastewater treatment plant, 220
9-25 Microfiltration unit 2 operating performance at the Bundamba advanced wastewater treatment plant, 222
9-26 Permeability trends for reverse osmosis units at the Bundamba advanced wastewater treatment plant, 223
9-27 Energy consumption at the Bundamba advanced wastewater treatment plant, 224
9-28 Gibson Island advanced wastewater treatment process schematic, 225
9-29 Gibson Island advanced wastewater treatment plant ultrafiltration unit, 228
9-30 Gibson Island advanced wastewater treatment plant reverse osmosis unit, 229
9-31 Gibson Island advanced wastewater treatment plant. In the foreground are ultraviolet units, on the left are ultrafiltration units, and in the back are reverse osmosis units, 229
9-32 Process flow diagram for the Luggage Point advanced water treatment plant, 232
9-33 Pall Microza microfiltration racks, 234
9-34 Beneficial impact of fouling management modifications on microfiltration permeability, 234
9-35 Three-stage reverse osmosis skid. The hydraulic turbocharger is shown on bottom left, 235
9-36 Normalized permeate flow for the Luggage Point advanced water treatment plant reverse osmosis train 1 from start-up to Sept. 3, 2010, 236
9-37 Normalized salt passage for the Luggage Point advanced water treatment plant reverse osmosis train 1 from start-up to Sept. 3, 2010, 236
9-38 Normalized differential pressure for the Luggage Point advanced water treatment plant reverse osmosis train 1 from start-up to Sept. 3, 2010, 237
9-39 One of the four Trojan ultraviolet PHOX units, 237
9-40 Relation of wastewater reclamation system with plant water systems, 241
9-41 Wastewater recovery treatment system block flow diagram, 241
9-42 Conductivity of reverse osmosis feed and combined permeate from all trains from April 2001 to March 2003, 244
10-1 Categories of constituents of emerging concern by chemical characteristics, 261
10-2 Rejection diagram for organic micropollutants during membrane treatment, 265
Tables

1-1 Selected worldwide indirect and direct potable reuse facilities, 3
2-1 Indicative log removals for various stages of treatment and unit processes, 12
2-2 Filter pore size comparison, 13
3-1 Health-based targets and helminth reduction targets for wastewater use in agriculture, 18
3-2 Maximum tolerable soil concentrations of various toxic chemicals based on human health protection, 19
3-3 Recommended minimum verification monitoring for wastewater and excreta use in agriculture and aquaculture, 21
3-4 Victoria, Australia, reclaimed water classes, treatment, and pathogen reduction, 22
3-5 New South Wales, Australia, guidelines for reclaimed water use from municipal sewage treatment plants, 23
3-6 Japan’s water reuse standards, 25
3-7 Suggested guidelines for water reuse, 26
3-8 Arizona water reuse types and classes, 36
3-9 California water reuse types and classes, 37
3-10 Florida water reuse types described in Florida Administrative Code 62-610, 41
3-11 Nevada water reuse types and classes, 42
3-12 Texas water reuse types and classes, 43
3-13 Washington water reuse types and classes, 44
3-14 Links to water reuse regulations, guidance, and fact sheets, 44
3-15 British microbial guidelines for graywater systems, 46
3-16 Singapore water quality standards, 2012, 47
3-17 Windhoek direct potable reuse water quality criteria, 47

4-1 Typical ranges of municipal wastewater and secondary treatment effluent quality, 53
4-2 Water quality parameters and their impact on membranes for water reuse applications, 54
4-3 Typical membrane product water quality for low- and high-pressure membranes, 56
4-4 Typical cycles of concentration, 58
4-5 Typical reclaimed water quality requirements for various industrial processes, 60
4-6 Typical reclaimed water quality requirements for various industrial processes, 61
4-7 Unit processes used for the removal of classes of constituents found in wastewater for reuse applications, 64
4-8 Typical product water quality for reverse osmosis membranes, 65
5-1 Filtration media pores sizes, 71
5-2 Polymeric membrane materials, 74
5-3 Typical microfiltration–ultrafiltration design criteria for water reuse facilities, 91
5-4 Example large-capacity water reuse projects that use microfiltration–ultrafiltration, 94
5-5 Monitoring methods for microfiltration–ultrafiltration systems, 95
5-6 Values of calcium carbonate precipitation potential, 113
5-7 Removal of microconstituents by ultraviolet (UV) irradiation, UV irradiation/hydrogen peroxide, and ozone, 120
6-1 General reverse osmosis data collection, 130
6-2 General reverse osmosis cleaning chemical guidelines, 140
7-1 Summary of coagulation–flocculation–sedimentation processes, 151
7-2 Microfiltration–ultrafiltration residuals and applicable regulations, 167
8-1 Membrane-based reuse treatment plant capital cost examples, with plant capacity of 10 mgd, 186
8-2 Membrane-based reuse treatment plant operations and maintenance cost examples, with plant capacity of 10 mgd, 186
8-3 Membrane-based reuse treatment plant cost of water, with plant capacity of 10 mgd, 187
9-1 Groundwater replenishment system capital cost breakdown, 193
9-2 Groundwater replenishment system operating costs, 194
9-3 Permit requirements for the Broad Run Water Reclamation Facility, 197
9-4 Cost information for NEWater factories, 218
9-5 Reverse osmosis performance at Bumdamba stage 1A, 223
9-6 Gibson Island advanced wastewater treatment plant log-removal values, 227
9-7 Gibson Island advanced wastewater treatment plant costs, 228
9-8 N-nitrosodimethylamine levels prior to and following preformed chloramination, 233
9-9 Estimated capital cost of the wastewater reclamation system: 3.0 mgd of product water, 1998, 242
9-10 Estimated annual operations and maintenance cost of the wastewater reclamation system: 3.0 mgd of product water, 1998, 242
9-11 Project cost analysis of the wastewater reclamation system: 3.0 mgd of product water, 1998, 243
10-1 Pharmacologically active compounds and rank of use, 259
10-2 Commonly used personal care products, 259
10-3 Pesticides, herbicides, and insecticides found in water and wastewater, 259
10-4 Observed average efficiencies of membrane bioreactors in the removal of various constituents of emerging concern, 263
10-5 Predictions of removal of constituents of emerging concern by nanofiltration and reverse osmosis, 264
10-6 Efficiencies of nanofiltration and reverse osmosis in the removal of various constituents of emerging concern, 266
A-1 MF system key design parameters, 275
A-2 RO system key design parameters, 275
A-3 GWRS typical water quality, 276
B-1 Design summary—Broad Run WRF Membrane Bioreactor System, 279
B-2 Broad Run Water Reclamation Facility—influent and effluent characteristics, 280
C-1 Membrane system design criteria, 281
C-2 Feed water quality (July 2008–March 2013), 282
D-1 Feed water quality, 283
D-2 Ozone system design criteria, 283
D-3 Microfiltration design criteria, 284
D-4 Reverse osmosis design criteria, 284
D-5 Advanced oxidation process, 285
D-6 Barrier recycled water constituents (2012), 285
D-7 Single pass low pressure boiler feed water, 287
D-8 Double pass high pressure boiler feed water, 287
E-1 Design characteristics of treatment processes used at NEWater Demonstration Plant, 289
E-2 Feedwater characteristics of Bedok NEWater Demonstration Plant, 289
E-3 Design criteria for plant processes and equipment at Bedok NEWater factory, 290
E-4 Design criteria for plant processes and equipment at Kranji NEWater factory, 291
E-5 Details of plant processes and equipment at Ulu Pandan & Changi NEWater factories, 292
E-6 Treated water quality criteria for NEWater treatment processes, 293
E-7 Typical NEWater quality, 294
F-1 Raw water quality for Bundamba Advanced Water Reclamation Facility, 295
F-2 Treated water quality requirements for Bundamba Advanced Water Reclamation Facility (selected parameters, in addition to Australian Drinking Water Guidelines), 296
F-3 Concentrate water quality requirements for Bundamba AWTF 1A, 297
F-4 MF design criteria and performance at Bundamba AWTF, 297
F-5 Gibson Island AWTP feed water design basis, 297
F-6 Gibson Island AWTP treated water quality requirements, 298
F-7 Gibson Island AWTP UF system design criteria, 298
F-8 Gibson Island AWTP RO system design criteria, 299
F-9 Gibson Island AWTP treated water quality requirements (ADWG and owner) and typical values, 299
F-10 Gibson Island AWTP performance vs. reclaimed water requirements, 300
F-11 Luggage Point AWTP influent (feed water) quality design basis (selected parameters), 303
F-12 Luggage Point AWTP treated water quality requirements (supplement to ADWG), 304
F-13 Luggage Point AWTP MF system design criteria, 304
F-14 Luggage Point AWTP RO system design criteria, 305
F-15 Luggage Point AWTP treated water quality: requirements versus plant performance test, 305

G-1 Wastewater effluent characteristics and discharge requirements, 307
G-2 Effluent water quality, 308
Acknowledgments

The AWWA Technical and Educational Council, the Water Quality and Technology Division, and the Membrane Processes committee gratefully acknowledge the contributions of the volunteers who drafted, edited, and provided the significant and critical commentary essential to the development of AWWA M62. The Technical Review Board members dedicated many hours in the final stages of preparation of this edition to ensure the overall technical quality, consistency, and accuracy of the manual.

Technical Review Board Members

Joseph Wong, Chair, Brown and Caldwell, Walnut Creek, Calif.
Brent Alspach, ARCADIS, Carlsbad, Calif.
Bruce Chalmers, CDM Smith, Irvine, Calif.
Dawn Flancher, AWWA Staff, Denver, Colo.
Judith Herschell, Herschell Environment, Pittsburgh, Penn.
Kenneth Mercer, AWWA Staff, Denver, Colo.

Authors of the First edition

*A special thank you to these volunteers who served as chapter coordinators.

Joseph Wong,* Chair, Brown and Caldwell, Walnut Creek, Calif.
Jorge Aguinaldo,* RWL Water, Tampa, Fla.
Rick Bond, Black & Veatch, Kansas City, Mo.
Thomas Broderick, Loudoun Water, Ashburn, Vir.
Charlie Cruz, Separation Processes Inc., Carlsbad, Calif.
Emily Davis, Separation Processes Inc., Carlsbad, Calif.
James (Jay) DeCarolis, Black & Veatch, San Marcos, Calif.
Andrew Findlay, MWH Australia, Manly West, Qld Australia
Val Frenkel, EKI, Erler & Kalinowski Inc., Burlingame, Calif.
Silvana M. Ghiu,* Hazen and Sawyer, San Diego, Calif.
Wesley Harijanto, California State Polytechnic University, Pomona, Calif.
Turaj Hosseini, Separation Processes Inc., Carlsbad, Calif.
Gary L. Hunter, Black & Veatch, Kansas City, Mo.
Curtis Kiefer, CDM Smith, Fort Lauderdale, Fla.
Tom Knoell, Orange County Water District, Fountain Valley, Calif.
Edmund A. Kobylinski, Black & Veatch, Cary, N.C.
Natalie W. La, California State Polytechnic University, Pomona, Calif.
Jim Lozier,* ch2m, Tempe, Ariz.
Chandra Mysore,* JACOBS™, Atlanta, Ga.
Jeff Neemann, Black & Veatch Corp., Kansas City, Mo.
Key Wee Ong, Singapore Public Utilities Board, Singapore
Eric Owens, West Basin Municipal Water District, Carson, Calif.
Mehul Patel, Orange County Water District, Fountain Valley, Calif.
Alan E. Rimer, Black & Veatch, Cary, N.C.
Cheryl Ross, West Basin Municipal Water District, Long Beach, Calif.
Larry Schimmoller, ch2m, Englewood, Colo.
Rich Stratton, HDR, Shingle Springs, Calif.
Arun Subramani, MWH, Arcadia, Calif.
Jennifer Thompson, CDM Smith, Carlsbad, Calif.
Ralph Valencia, United Water, Los Angeles, Calif.
Don Vandertulip,* Arcadis, Dallas, Texas
Vasu Veerapaneni,* Black & Veatch, Kansas City, Mo.
Alex Wesner, Separation Processes Inc., Carlsbad, Calif.
Greg Wetterau,* CDM Smith, Rancho Cucamonga, Calif.
Wyatt Won, West Basin Municipal Water District, Carson, Calif.
Joe Zhao, URS Corporation, Santa Ana, Calif.
Christine Zheng, California State Polytechnic University, Pomona, Calif.

Reviewers to the First Edition
Robert Bergman, ch2m, Gainesville, Fla.
James Crook, Environmental Consultant, Norwell, Mass.

Chapter Authors

Chapter 1: Development of Water Reuse Practices
Don Vandertulip and Val Frenkel

Chapter 2: Planning for Reuse Applications
Don Vandertulip and Lisa Prieto

Chapter 3: Water Reuse Guidelines and Regulations
Joseph Wong and Cheryl Ross

Chapter 4: Source and Treated Water Quality
Chandra Mysore and Joseph Zhao

Chapter 5: Membrane Process Treatment Facility Design
Jorge T. Aguinaldo, James De Carolis, Srinivas Veerapaneni, Scott Freeman,
Alex Wesner, Robert Bergman, Jeff Neemann, and James Lozier

Chapter 6: Operations
Silvana Ghiu, Eric Owens, Emily Davis, Turaj Hosseini,
Ralph Valencia, Tom Knoell, and Wyatt Won

Chapter 7: Residuals Management
Chandra Mysore, Rick Bond, and Edmund Kobylinski
Chapter 8: Cost of Treatment
 Greg Wetterau and Curt Kiefer

Chapter 9: Case Studies
 Authors are listed in each case study

Chapter 10: Future Technology Trends and Contaminants of Emerging Concerns
 Joseph Wong, Arun Subramani, and Robert McCandless
Preface

Reverse osmosis (RO) membranes have been used in water reuse since the 1960s. Cellulose acetate membranes for treating conventionally clarified municipal effluent was initially applied to small industrial applications and as irrigation water for golf courses. In the 1970s, Orange County Water District in southern California used cellulose acetate membranes to produce 5 mgd of RO permeate that was blended with imported water for injection into seawater intrusion barrier wells. The use of membranes in full-scale reuse applications has changed dramatically based on research performed in the 1980s and 1990s. Those efforts demonstrated that microfiltration–ultrafiltration (MF–UF) membranes can offer superior pretreatment compared to RO when treating municipal effluents. Those efforts also incorporated polyamide membrane, which has all but replaced cellulose acetate in this application.

In the 1990s, many municipal agencies began operating full-scale MF–UF and polyamide RO membrane systems to treat secondary and tertiary municipal effluents. At that time, early adopters of large-scale membrane treatment processes for water reuse were rare. These membrane users transitioned the industry from theoretical and pilot-scale investigations into full-scale operations, bringing about a new facet of water reuse. In the years since, the industry has learned much about membrane performance and sustainability over long-term operation, including handling unanticipated operational challenges brought on by organic-laden, variable feed sources that can change not only year to year but sometimes day to day.

Operational considerations for low- and high-pressure membrane technologies in water reuse applications are similar to their potable system analogs. However, there are subtle differences that can pose additional problems or issues to the water reuse operator if these are not considered or anticipated. Membrane system operators in reuse applications need to understand that “industry guidance” has historically been based on potable water treatment applications. Irreversible fouling and flux loss that lead to increased cleaning intervals and reduced membrane life are constant challenges in this environment. Finding the balance between cleaning frequency and chemical and energy costs is often the goal for membrane facilities in water reuse applications. Fiber breakage and loss of RO membrane rejection are significant problems that can be accelerated by this source water. This manual presents a comprehensive description of the issues related to applying membrane technologies in water reuse projects.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACH</td>
<td>aluminum chlorhydrate</td>
</tr>
<tr>
<td>ANL</td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>AOC</td>
<td>assimilable organic carbon</td>
</tr>
<tr>
<td>AOP</td>
<td>advanced oxidation process</td>
</tr>
<tr>
<td>ASR</td>
<td>aquifer storage and recovery</td>
</tr>
<tr>
<td>AWT</td>
<td>advanced water treatment</td>
</tr>
<tr>
<td>AWWA</td>
<td>American Water Works Association</td>
</tr>
<tr>
<td>BAC</td>
<td>biologically active carbon</td>
</tr>
<tr>
<td>BIRM</td>
<td>biological immune response modulator</td>
</tr>
<tr>
<td>BNR</td>
<td>biological nutrient removal</td>
</tr>
<tr>
<td>BOD</td>
<td>biological oxygen demand</td>
</tr>
<tr>
<td>CA</td>
<td>cellulose acetate</td>
</tr>
<tr>
<td>Ca(OCl)₂</td>
<td>calcium hypochlorite</td>
</tr>
<tr>
<td>CEC</td>
<td>chemicals of emerging concern</td>
</tr>
<tr>
<td>CIP</td>
<td>clean in place</td>
</tr>
<tr>
<td>COC</td>
<td>cycles of concentration</td>
</tr>
<tr>
<td>COD</td>
<td>chemical oxygen demand</td>
</tr>
<tr>
<td>CTA</td>
<td>cellulose triacetate</td>
</tr>
<tr>
<td>DAF</td>
<td>dissolved air flotation</td>
</tr>
<tr>
<td>DALY</td>
<td>disability-adjusted life year</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Energy</td>
</tr>
<tr>
<td>DPR</td>
<td>direct potable reuse</td>
</tr>
<tr>
<td>EC</td>
<td>electrical conductivity</td>
</tr>
<tr>
<td>ED</td>
<td>electrodialysis</td>
</tr>
<tr>
<td>ED–EDR</td>
<td>electrodialysis–electrodialysis reversal</td>
</tr>
<tr>
<td>EDC</td>
<td>endocrine-disrupting chemical</td>
</tr>
<tr>
<td>EDR</td>
<td>electrodialysis reversal</td>
</tr>
<tr>
<td>efOM</td>
<td>effluent organic matter</td>
</tr>
<tr>
<td>ESA</td>
<td>Endangered Species Act</td>
</tr>
<tr>
<td>FAC</td>
<td>free available chlorine</td>
</tr>
<tr>
<td>FeCl₃</td>
<td>ferric chloride</td>
</tr>
<tr>
<td>GRRP</td>
<td>groundwater recharge reuse projects</td>
</tr>
<tr>
<td>GWI</td>
<td>Global Water Intelligence</td>
</tr>
<tr>
<td>GWRRD</td>
<td>Groundwater Replenishment Reuse Draft Regulation</td>
</tr>
<tr>
<td>HPM</td>
<td>high-pressure membrane</td>
</tr>
<tr>
<td>IMS</td>
<td>integrated membrane system</td>
</tr>
</tbody>
</table>
IPR indirect potable reuse
LPM low-pressure membrane
LRV log-reduction value
MBR membrane bioreactor
MCL maximum contaminant limit
MF microfiltration
MFI modified fouling index
MGD million gallons per day
MIC microbiologically induced corrosion
MMFI mini-plugging factor index
NaOCl sodium hypochlorite
NDMA N-nitrosodimethylamine
NF nanofiltration
NOM natural organic matter
NPDES National Pollutant Discharge Elimination System
NTU nephelometric turbidity unit
NWRI National Water Research Institute
O&M operations and maintenance
PA polyamide
PAC powdered activated carbon
PACl polyaluminum chloride
PES polyether sulfone
PP polypropylene
PPCP pharmaceuticals and personal care products
ppm parts per million
PSU polysulfone
PVDF polyvinyl fluoride
RIB rapid infiltration basins
RO reverse osmosis
RWC recycled water contribution
RWQCB regional water quality control board
SAR soil adsorption ratio
SAT soil aquifer treatment
SBS sodium bisulfite
SDI silt density index
SMP soluble microbial products
TCEQ Texas Commission on Environmental Quality
TDC total direct cell
TDS total dissolved solids
TKN total Kjeldahl nitrogen
TMDL total maximum daily load
TOC total organic carbon
TSS total suspended solids
UF ultrafiltration
USEPA US Environmental Protection Agency
VOC volatile organic compound
WHO World Health Organization
WRA WaterReuse Association
WTP water treatment plant
WWTP wastewater treatment plant
Development of Water Reuse Practices

HISTORY OF WATER REUSE

Reuse of water has occurred for centuries beginning with reuse of liquid waste in agricultural practice. Sewage farming was practiced in the United States in the 1800s and peaked in California in 1923, with 70 communities applying their municipal wastewater directly on food crops (NRC 2012). Agricultural water reuse was prominent in Texas south of San Antonio starting in the 1880s, with a formal contract between the City of San Antonio and the San Antonio Irrigation Company in 1901. Other Texas cities followed—Amarillo in 1920, Lubbock in 1930, Odessa in 1940, and Abilene in 1960—providing reclaimed water to farmers and ranchers. As cities grew, centralized wastewater treatment was more widely used and improved water quality, allowing for the first small urban water reuse system for irrigation of Golden Gate Park in San Francisco in 1912 (WRA 2012).

Industrial reuse of water reclaimed from treated municipal wastewater was documented in the 1940s, with the city of Big Spring, Texas, supplying the Cosden Oil and Chemical refinery in 1944. The cities of Odessa and Amarillo followed in the 1950s and the 1960s; this was the beginning of reclaimed water use for power plant cooling in several Texas cities (Texas Water Development Board 2011). In the early 1970s, Bethlehem Steel in Baltimore, Md., began using 100 mgd of reclaimed water for industrial purposes (USEPA 2004). By 2010, 57 power plants in 16 states were using reclaimed water for power plant cooling (DOE–ANL 2007).

TERMINOLOGY

ANSI/AWWA G481 (2014), Reclaimed Water Program for Operation and Management, describes the critical requirements for effective operation and management of a reclaimed water program and defines reclaimed water as water recovered following treatment of domestic