American Water Works Association
Dedicated to the World's Most Important Resource®

AWWA Standard

Installation of Ductile-Iron Mains and Their Appurtenances

Effective date: July 1, 2017.
AWWA Standard

This document is an American Water Works Association (AWWA) standard. It is not a specification. AWWA standards describe minimum requirements and do not contain all of the engineering and administrative information normally contained in specifications. The AWWA standards usually contain options that must be evaluated by the user of the standard. Until each optional feature is specified by the user, the product or service is not fully defined. AWWA publication of a standard does not constitute endorsement of any product or product type, nor does AWWA test, certify, or approve any product. The use of AWWA standards is entirely voluntary. This standard does not supersede or take precedence over or displace any applicable law, regulation, or code of any governmental authority. AWWA standards are intended to represent a consensus of the water industry that the product described will provide satisfactory service. When AWWA revises or withdraws this standard, an official notice of action will be placed on the first page of the Official Notice section of Journal – American Water Works Association. The action becomes effective on the first day of the month following the month of Journal – American Water Works Association publication of the official notice.

American National Standard

An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether that person has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review, and users are cautioned to obtain the latest editions. Producers of goods made in conformity with an American National Standard are encouraged to state on their own responsibility in advertising and promotional materials or on tags or labels that the goods are produced in conformity with particular American National Standards.

CAUTION NOTICE: The American National Standards Institute (ANSI) approval date on the front cover of this standard indicates completion of the ANSI approval process. This American National Standard may be revised or withdrawn at any time. ANSI procedures require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute, 25 West 43rd Street, Fourth Floor, New York, NY 10036; 212.642.4900; or emailing info@ansi.org.

DOI: http://dx.doi.org/10.12999/AWWA.C600.17

This AWWA content is the product of thousands of hours of work by your fellow water professionals. Revenue from the sales of this AWWA material supports ongoing product development. Unauthorized distribution, either electronic or photocopied, is illegal and hinders AWWA’s mission to support the water community.

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information or retrieval system, except in the form of brief excerpts or quotations for review purposes, without the written permission of the publisher.

Copyright © 2017 by American Water Works Association
Printed in USA

Copyright © 2017 American Water Works Association. All Rights Reserved.
Committee Personnel

The AWWA A21 Subcommittee on the Installation of Ductile-Iron Pipe, which reviewed and approved this standard, had the following personnel at the time of approval:

J. Hal Eddings, Chair

General Interest Members

S.M. Passarelli,* Standards Engineer Liaison, AWWA, Denver, Colo. (AWWA)
J.R. Plattsmier, HDR Engineering Inc., Denver, Colo. (AWWA)
P.A. Selig, Consultant, Birmingham, Ala. (AWWA)
J.M. Vellano, Vellano Brothers Inc., Latham, N.Y. (AWWA)

Producer Members

L.R. Dunn, U.S. Pipe & Foundry Company, Birmingham, Ala. (AWWA)
J.H. Eddings, McWane Ductile, Phillipsburg, N.J. (AWWA)
J.A. Fancher II,† American Cast Iron Pipe Company, Birmingham, Ala. (AWWA)
M.D. Gaston, American Cast Iron Pipe Company, Birmingham, Ala. (AWWA)
L.G. Horn, Ductile Iron Pipe Research Association, Birmingham, Ala. (DIPRA)

User Members

D.T. Bradley, Oak Lodge Water District, Portland, Ore. (AWWA)
J.L. Doane, Tualatin Valley Water District, Beaverton, Ore. (AWWA)
R.Y. Matsui, Honolulu, Hawaii (AWWA)
D.D. Montgomery, Independence Water Department, Independence, Mo. (AWWA)
C.J. Patla, Connecticut Water Service Inc., Clinton, Conn. (AWWA)
T.J. Roode, Denver Water, Denver, Colo. (AWWA)
R.L. Worden, COMCD, Norman, Okla. (AWWA)

* Liaison, nonvoting
† Alternate
The AWWA Standards Committee on Ductile-Iron Pipe and Fittings, which reviewed and approved this standard, had the following personnel at the time of approval:

John R. Plattsmier, Chair

General Interest Members

J. Hebenstreit, Underwriters Laboratories Inc., Northbrook, Ill. (AWWA)
M.B. Horsley, Horsley Engineering LLC, Overland Park, Kan. (AWWA)
D.H. Kroon, Corrpro Companies Inc., Houston, Texas (AWWA)
D.D. Lary, Wright-Pierce, Topsham, Maine (NEWWA)
P.J. Mourt, Mott MacDonald, Philadelphia, Pa. (AWWA)
S.M. Passarelli, Standards Engineer Liaison, AWWA, Denver, Colo. (AWWA)
J.R. Plattsmier, HDR Engineering Inc., Denver, Colo. (AWWA)
S. Pool, HDR Engineering Inc., Denver, Colo. (AWWA)
T.M. Stinson, Kleinfelder, Cambridge, Mass. (NEWWA)
L.C. Yates, McGoodwin, Williams & Yates, Fayetteville, Ark. (AWWA)

Producer Members

L.R. Dunn, U.S. Pipe & Foundry Company, Birmingham, Ala. (AWWA)
J.H. Eddings, McWane Ductile, Phillipsburg, N.J. (AWWA)
J.A. Fancher II, American Cast Iron Pipe Company, Birmingham, Ala. (AWWA)
M.D. Gaston, American Cast Iron Pipe Company, Birmingham, Ala. (AWWA)
L.G. Horn, Ductile Iron Pipe Research Association, Birmingham, Ala. (DIPRA)
M. Horton, U.S. Pipe & Foundry Company, Birmingham, Ala. (AWWA)
J.C. Jones, S&B Technical Products, Fort Worth, Texas (AWWA)
T.J. Muntz, National Association of Pipe Fabricators, Stillwater, Minn. (AWWA)
M.D. Wooten, Griffin Pipe Products Company, Downers Grove, Ill. (AWWA)

User Members

D.T. Bradley, Oak Lodge Water District, Portland, Ore. (AWWA)
M.J. Britch, Tualatin Valley Water District, Portland, Ore. (AWWA)
A.J. DeBoy, Indiana American Water, Greenwood, Ind. (AWWA)

* Alternate
† Liaison, nonvoting
<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>W.C. Duke</td>
<td>Bureau of Reclamation, Denver, Colo.</td>
</tr>
<tr>
<td>M.W. Griffin</td>
<td>American Water Company, Saint Louis, Mo.</td>
</tr>
<tr>
<td>J.M. Kennedy</td>
<td>Tampa Bay Water, Clearwater, Fla.</td>
</tr>
<tr>
<td>D.D. Montgomery</td>
<td>Independence Water Department, Independence, Mo.</td>
</tr>
<tr>
<td>K.C. Morgan,*</td>
<td>Standards Council Liaison, City of Phoenix Water Services, Phoenix, Ariz.</td>
</tr>
<tr>
<td>G.M. Page</td>
<td>Cobb County–Marietta Water Authority, Marietta, Ga.</td>
</tr>
<tr>
<td>C.J. Patla</td>
<td>Connecticut Water Service Inc., Clinton, Conn.</td>
</tr>
<tr>
<td>T.J. Roode</td>
<td>Denver Water, Denver, Colo.</td>
</tr>
<tr>
<td>A. Shively</td>
<td>City of Kansas City, Kansas City, Mo.</td>
</tr>
<tr>
<td>R.L. Worden</td>
<td>COMCD, Norman, Okla.</td>
</tr>
</tbody>
</table>

* Liaison, nonvoting
This page intentionally blank.
Contents

All AWWA standards follow the general format indicated subsequently. Some variations from this format may be found in a particular standard.

SEC. PAGE SEC. PAGE

Foreword
I Introduction ix 4.5 Highway and Railroad
I.A Background ix Crossings 21
I.B History ix 4.6 Trenchless Applications 21
I.C Acceptance x 4.7 Subaqueous Crossings 22
II Special Issues xi 4.8 Service Taps 23
II.A Use as Reference xi 5 Verification
II.B Chlorine and Chloramine 5.1 Inspection 25
Degradation of Elastomers xii 5.2 Hydrostatic Testing 25
III Use of This Standard xi 6 Delivery
III.A Purchaser Options and 6.1 Handling, Unloading, and
Alternatives xii Storage 30
III.B Modification to Standard xii 6.2 Affidavit of Compliance 32
IV Major Revisions xii
V Comments xiii

Standard

1 General
1.1 Scope 1 4 Requirements
1.2 Purpose 2 4.1 Permeation 4
1.3 Application 2 4.2 Materials 4
2 References 2 4.3 Installing Ductile-Iron Mains 4
3 Definitions 3 4.4 Disinfection 21

Figures
1 Laying Conditions for
 Ductile-Iron Pipe 10
2 Push-on–Joint Assembly 11
3 Mechanical-Joint Assembly 12
4 Pipeline Curve Geometry 15
5 Preferred Method for Making
 Direct Service Taps on
 Polyethylene-Encased
 Iron Pipe 24

Tables
1 Mechanical-Joint Bolt Torque 13
2 Maximum Joint Deflection Full-
 Length Pipe—Push-on–Type
 Joint Pipe 14
<table>
<thead>
<tr>
<th>SEC.</th>
<th>PAGE</th>
<th>SEC.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>5B</td>
<td></td>
</tr>
<tr>
<td>Maximum Joint Deflection</td>
<td></td>
<td>Hydrostatic Testing Allowance</td>
<td></td>
</tr>
<tr>
<td>Full-Length Pipe—</td>
<td></td>
<td>per 300 m of Pipeline—</td>
<td></td>
</tr>
<tr>
<td>Mechanical-Joint Pipe</td>
<td>15</td>
<td>L/hr</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Maximum Recommended</td>
<td></td>
<td>Maximum Stacking Heights—</td>
<td></td>
</tr>
<tr>
<td>Direct Tap Size</td>
<td>24</td>
<td>Ductile-Iron Pipe</td>
<td>31</td>
</tr>
<tr>
<td>5A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrostatic Testing Allowance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>per 1,000 ft of Pipeline—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gph</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Foreword

This foreword is for information only and is not a part of ANSI/*AWWA C600.*

I. Introduction.

I.A. Background. The provisions of this standard are intended to act as a guide for installing extensions to existing distribution systems and in preparing contract documents for the construction of new systems or extensions. The standard is to be used as a guide for installing bell-and-spigot ductile-iron pipe (that includes push-on joint, mechanical joint, and restrained joint) and does not cover the provision and delivery of material, any other type of pipe, or any other type of joint. The standard includes information to be used as a part of the purchaser’s documents.

I.B. History. The first edition of this AWWA standard, titled “Standard Specifications for Laying Cast-Iron Pipe” (7D.1-1938), was adopted in April 1938. The standard was published in the February 1938 edition of *Journal AWWA*. The standard was revised in 1949, including a change of title to “Standard Specifications for Installation of Cast-Iron Water Mains” (7D.1-T-1949 and C600-49T). The standard was expanded by adding numerous tables and installation guidelines. The model addendum was also expanded. The revised standard was published in the December 1949 edition of *Journal AWWA*. Section 9b, Joining of Mechanical-Joint Pipe, was added in May 1954. Section 9c, Joining of Push-on Joint Pipe, was added in 1964.

In 1975, the AWWA Standards Council formed the present C600 committee to revise ANSI/AWWA C600 to reflect current practices and to add ductile iron as a pipe material. To do this, the committee decided to completely change the character of the standard, removing the model addendum and making the standard consistent with the style of other AWWA standards.

In 1980, an addendum to the standard was approved that revised parts of Sec. 3.4 regarding mechanical-joint assembly.

The revisions made in the 1982 edition included the elimination of references to gray cast-iron pipe as a material for new pipeline installation because it was no longer manufactured for water utility service. Also, metric conversions were included in the 1982 revision; these were direct conversions of customary US inch-pound units, rather than those shown in International Organization for Standardization (ISO) standards.

American National Standards Institute, 25 West 43rd Street, Fourth Floor, New York, NY10036.

Copyright © 2017 American Water Works Association. All Rights Reserved.
The revisions made in 1987 included new references, a caveat against prolonged exposure of polyethylene film to sunlight, revised sections on thrust restraint and hydrostatic testing, and a discussion on making service taps on polyethylene-encased iron mains.

Revisions made in the 1993 edition included the addition of 60-in. (1,500 mm) and 64-in. (1,600 mm) pipe, revisions to the hydrant installation section, a new section on subaqueous crossings, and a recommended procedure for tapping through polyethylene encasement.

For the 1999 revision, there were no major changes to the standard. Review responsibility was transferred to the A21 committee, but there were no changes to the alphanumeric designation of the standard.

Revisions made in the 2005 edition included restrictions on filling the void between carrier and casing pipe for highway and railroad crossings, the introduction of trenchless applications, and a modification of the hydrostatic testing allowance formula.

Revisions made in the 2010 edition included additional instructions for the selection and installation of polyethylene encasement, including subaqueous installations, and a reference to high-pressure water cleaning in the flushing section.

This edition was approved on Jan. 14, 2017.

I.C. Acceptance. In May 1985, the US Environmental Protection Agency (USEPA) entered into a cooperative agreement with a consortium led by NSF International (NSF*) to develop voluntary third-party consensus standards and a certification program for direct and indirect drinking water additives. Other members of the original consortium included the Water Research Foundation (formerly AwwaRF) and the Conference of State Health and Environmental Managers (COSHEM). The American Water Works Association (AWWA) and the Association of State Drinking Water Administrators (ASDWA) joined later.

In the United States, authority to regulate products for use in, or in contact with, drinking water rests with individual states. Persons outside the United States should contact the appropriate authority having jurisdiction.
2. Two standards developed under the direction of NSF: NSF/ANSI 60, Drinking Water Treatment Chemicals—Health Effects, and NSF/ANSI 61, Drinking Water System Components—Health Effects.

3. Other references, including AWWA standards, Food Chemicals Codex, Water Chemicals Codex, and other standards considered appropriate by the state or local agency.

Various certification organizations may be involved in certifying products in accordance with NSF/ANSI 61. Individual states or local agencies have authority to accept or accredit certification organizations within their jurisdictions. Accreditation of certification organizations may vary from jurisdiction to jurisdiction.

Annex A, “Toxicology Review and Evaluation Procedures,” to NSF/ANSI 61 does not stipulate a maximum allowable level (MAL) of a contaminant for substances not regulated by a USEPA final maximum contaminant level (MCL). The MALs of an unspecified list of “unregulated contaminants” are based on toxicity testing guidelines (noncarcinogens) and risk characterization methodology (carcinogens). Use of Annex A procedures may not always be identical, depending on the certifier.

ANSI/AWWA C600 does not address additives requirements. Users of this standard should consult the appropriate state or local agency having jurisdiction in order to

1. Determine additives requirements, including applicable standards.
2. Determine the status of certifications by all parties offering to certify products for contact with, or treatment of, drinking water.
3. Determine current information on product certification.

II. Special Issues.

II.A. Use as Reference. ANSI/AWWA C600, Installation of Ductile-Iron Mains and Their Appurtenances, can be used as a reference when making extensions to existing distribution or transmission systems or when constructing new distribution or transmission systems using ductile-iron mains with either mechanical or push-on joints. It is not intended for this standard to be used as a purchase document, but it may be used as a reference in purchaser’s documents. It is based on a consensus of the committee on the minimum practice consistent with sound, economical service under normal conditions, and its applicability under any circumstances must be reviewed by a responsible engineer. The standard is not intended to preclude the manufacture, marketing, purchase, or use of any product, process, or procedure.

* Both publications available from National Academy of Sciences, 500 Fifth Street, NW, Washington, DC 20001.
II.B. Chlorine and Chloramine Degradation of Elastomers. The selection of materials is critical for water service and distribution piping in locations where there is a possibility that elastomers will be in contact with chlorine or chloramines. Documented research has shown that elastomers such as gaskets, seals, valve seats, and encapsulations may be degraded when exposed to chlorine or chloramines. The impact of degradation is a function of the type of elastomeric material, chemical concentration, contact surface area, elastomer cross section, and environmental conditions as well as temperature. Careful selection of and specifications for elastomeric materials and the specifics of their application for each water system component should be considered to provide long-term usefulness and minimum degradation (swelling, loss of elasticity, or softening) of the elastomer specified.

III. Use of This Standard. It is the responsibility of the user of an AWWA standard to determine that the products described in that standard are suitable for use in the particular application being considered.

III.A. Purchaser Options and Alternatives. The following items should be provided by the purchaser:

1. Standard used—that is, ANSI/AWWA C600, Installation of Ductile-Iron Mains and Their Appurtenances, of latest revision.
2. Whether compliance with NSF/ANSI 61, Drinking Water System Components—Health Effects, is required.
3. Details of other federal, state or provincial, and local requirements (Sec. 4.2).

III.B. Modification to Standard. Any modification of the provisions, definitions, or terminology in this standard must be provided by the purchaser.

IV. Major Revisions. Major revisions to this edition of the standard include the following:

1. New Sec. II.B, Chlorine and Chloramine Degradation of Elastomers, was added.
2. Added references to raw water throughout the standard.
3. Provided additional clarification on Pipe Cleanliness section (Sec. 4.3.3.3) for polyethylene pipe.
4. Updated Table 1, Mechanical-Joint Bolt Torque, to include reference through 64-in. (1,600-mm) joint size.
5. Clarified allowable backfill material (Sec. 4.3.5.1.2).
6. Added provisions for air-release and vacuum vents (Sec. 4.3.6.3.2).
7. Added recommendations for tapping (see Sec. 4.8.1) and Table 4, Maximum Recommended Direct Tap Size.
8. Clarified recommendations in Sec. 5.2.1.4, Testing Allowance, and in Sec. 5.2.1.5, Acceptance of Installation.

V. Comments. If you have any comments or questions about this standard, please call AWWA Engineering and Technical Services at 303.794.7711, FAX at 303.795.7603; write to the department at 6666 West Quincy Avenue, Denver, CO 80235-3098; or email at standards@awwa.org.
This page intentionally blank.
Sec. 1.1 Scope

This standard describes installation procedures for ductile-iron mains and their appurtenances for potable water, wastewater, reclaimed water, and raw water.

1.1.1 Conditions not discussed. Installations that require special attention, techniques, and materials are not discussed. Each of these installations requires special considerations based on many influencing factors that cannot be discussed adequately in a single standard. These installations may require design by a competent engineer and consultation with representatives of the material manufacturing industry. Some of these special installations include the following:

1. Piping through rigid walls.
2. Piping on supports aboveground or belowground.
3. Piping requiring insulation.
4. Treatment plant or pump-station piping.
5. Flanged-joint piping.
6. Ball and socket piping.
7. Grooved and shouldered piping.
8. Restrained joint piping.
9. Industrial piping.