Erratum to
ANSI/AWWA C900-07
Standard
for
Polyvinyl Chloride (PVC) Pressure Pipe and
Fabricated Fittings, 4 In. Through 12 In. (100 mm
Through 300 mm), for Water Distribution
(February 2008)

1. Change Sec. 4.2.2, page 6, to read:

Pipes, couplings, and fabricated fittings. PVC pipe, couplings, and fabricated
fittings shall be made from virgin PVC resin that has been compounded to provide
physical and chemical properties that equal or exceed cell class 12454 as defined
in ASTM D1784. Pipe compounds shall also qualify for a minimum hydrostatic
design basis (HDB) of 4,000 psi in accordance with PPI TR-3. Fittings shall be
fabricated from pipe materials that qualify for a minimum hydrostatic design basis
(HDB) of 4,000 psi in accordance with PPI TR-3.
Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 In. Through 12 In. (100 mm Through 300 mm), for Water Transmission and Distribution

Effective date: Sept. 1, 2007
First edition approved by AWWA Board of Directors June 8, 1975.
This edition approved June 24, 2007.
AWWA Standard

This document is an American Water Works Association (AWWA) standard. It is not a specification. AWWA standards describe minimum requirements and do not contain all of the engineering and administrative information normally contained in specifications. The AWWA standards usually contain options that must be evaluated by the user of the standard. Until each optional feature is specified by the user, the product or service is not fully defined. AWWA publication of a standard does not constitute endorsement of any product or product type, nor does AWWA test, certify, or approve any product. The use of AWWA standards is entirely voluntary. AWWA standards are intended to represent a consensus of the water supply industry that the product described will provide satisfactory service. When AWWA revises or withdraws this standard, an official notice of action will be placed on the first page of the classified advertising section of Journal AWWA. The action becomes effective on the first day of the month following the month of Journal AWWA publication of the official notice.

American National Standard

An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether that person has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review, and users are cautioned to obtain the latest editions. Producers of goods made in conformity with an American National Standard are encouraged to state on their own responsibility in advertising and promotional materials or on tags or labels that the goods are produced in conformity with particular American National Standards.

CAUTION NOTICE: The American National Standards Institute (ANSI) approval date on the front cover of this standard indicates completion of the ANSI approval process. This American National Standard may be revised or withdrawn at any time. ANSI procedures require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute, 25 West 43rd Street, Fourth Floor, New York, NY 10036; (212) 642-4900.

Science and Technology

AWWA unites the entire water community by developing and distributing authoritative scientific and technological knowledge. Through its members, AWWA develops industry standards for products and processes that advance public health and safety. AWWA also provides quality improvement programs for water and wastewater utilities.

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information or retrieval system, except in the form of brief excerpts or quotations for review purposes, without the written permission of the publisher.
Committee Personnel

The Standard C900 subcommittee that developed this standard had the following personnel at the time:

John F. Houle, Chair

R.P. Fuerst, Bureau of Reclamation, Denver, Colo. (AWWA)
J.F. Houle, PW Pipe, Eugene, Ore. (AWWA)
G.J. Lefort, IPEX Inc., Mississauga, Ont. (AWWA)
E.E. Schmidt, Diamond Plastics Corporation, Grand Island, Neb. (AWWA)
R.P. Walker, Uni-Bell PVC Pipe Association, Dallas, Texas (UNI-BELL)
W.R. Whidden, Post Buckley Schuh & Jernigan, Orlando, Fla. (AWWA)

The AWWA Standards Committee on Polyvinyl Chloride Pressure Pipe and Fittings, which reviewed and approved this standard, had the following personnel at the time of approval:

John L. Diebel, Chair
Robert P. Walker, Vice-Chair

General Interest Members

J. Calkins, Elkton, Md. (AWWA)
J.P. Castronovo, Houston, Texas (AWWA)
J.L. Diebel, CH2M Hill, Denver, Colo. (AWWA)
R. Holme, Toronto, Ont. (AWWA)
G.E. Laverick, Underwriters Laboratories Inc., Northbrook, Ill. (UL)
J.H. Lee, Dayton & Knight Ltd., North Vancouver, B.C. (AWWA)
T.J. McCandless,* Standards Engineer Liaison, AWWA, Denver, Colo. (AWWA)

*Liaison, nonvoting
S.A. McKelvie, Parsons Brinckerhoff Quade & Douglas, Boston, Mass. (AWWA)
J.R. Paschal, Bodycote-Broutman, Ypsilanti, Mich. (NSF)
J.K. Snyder, Snyder Environmental Engineering Associates, Audubon, Pa. (AWWA)
W.R. Whidden, Post Buckley Schuh & Jernigan, Orlando, Fla. (AWWA)
K. Zastrow,* Underwriters Laboratories Inc., Northbrook, Ill. (UL)

Producer Members

L.J. Gill, IPEX Inc., Mississauga, Ont. (AWWA)
S.B. Gross, CertainTeed Corporation, Valley Forge, Pa. (AWWA)
G. Gundel, Specified Fittings Inc., Bellingham, Wash. (AWWA)
J.F. Houle, PW Pipe, Eugene, Ore. (AWWA)
J. Riordan, HARCO Fittings, Lynchburg, Va. (AWWA)
E.E. Schmidt, Diamond Plastics Corporation, Grand Island, Neb. (AWWA)
R.P. Walker, Uni-Bell PVC Pipe Association, Dallas, Texas (UNI-BELL)

User Members

R.P. Fuerst, Bureau of Reclamation, Denver, Colo. (AWWA)
K.S. Jeng-Bullock, City of Houston, Houston, Texas (AWWA)
S. Poole, EPCOR Water Services, Edmonton, Alta. (AWWA)
D.R. Young, Florida Cities Water Company, Sarasota, Fla. (AWWA)

*Alternate
All AWWA standards follow the general format indicated subsequently. Some variations from this format may be found in a particular standard.

<table>
<thead>
<tr>
<th>SEC.</th>
<th>PAGE</th>
<th>SEC.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td></td>
<td>4.5</td>
<td>Fabricated Fitting Requirements</td>
</tr>
<tr>
<td>I</td>
<td>Introduction</td>
<td>vii</td>
<td>4.6</td>
</tr>
<tr>
<td>I.A</td>
<td>Background</td>
<td>vii</td>
<td>4.7</td>
</tr>
<tr>
<td>I.B</td>
<td>History</td>
<td>vii</td>
<td>5</td>
</tr>
<tr>
<td>I.C</td>
<td>Acceptance</td>
<td>viii</td>
<td>5.1</td>
</tr>
<tr>
<td>II</td>
<td>Special Issues</td>
<td>ix</td>
<td>5.2</td>
</tr>
<tr>
<td>II.A</td>
<td>Pipe Selection</td>
<td>ix</td>
<td>5.3</td>
</tr>
<tr>
<td>III</td>
<td>Use of This Standard</td>
<td>x</td>
<td>6</td>
</tr>
<tr>
<td>III.A</td>
<td>Purchaser Options and Alternatives</td>
<td>x</td>
<td>6.1</td>
</tr>
<tr>
<td>III.B</td>
<td>Modification to Standard</td>
<td>xi</td>
<td>6.2</td>
</tr>
<tr>
<td>IV</td>
<td>Major Revisions</td>
<td>xi</td>
<td>6.3</td>
</tr>
<tr>
<td>V</td>
<td>Comments</td>
<td>xi</td>
<td></td>
</tr>
</tbody>
</table>

Standard

1 General

1.1 Scope | 1
1.2 Purpose | 1
1.3 Application | 2

2 References | 2

3 Definitions | 3

4 Requirements

4.1 Permeation | 6
4.2 Materials | 6
4.3 Pipe Requirements | 7
4.4 Machined Coupling Requirements | 10

Appendixes

A Bibliography | 21

B Recurring (Cyclic) Surge—

Figures and Design Example

B.1 Discussion | 23
B.2 Design Example | 23

Figures

1 Lap Shear Test | 12
B.1 Illustration of Stress Terms | 26
B.2 Cyclic Design Curves | 27
Tables

1 Dimensions, Pressure Classes, and Dimension Ratios (DRs) for PVC Pipe With Cast-Iron-Pipe-Equivalent ODs

2 Pressure-Test Requirements

3 Temperature Coefficients, F_T

4 Allowable Maximum Occasional Surge Pressure Capacity and Allowable Sudden Changes in Water Velocity for Pipe Operating at 73°F (23°C) at Working Pressures Expressed as Percent of Nominal Pressure Class

(PCI)
Foreword

This foreword is for information only and is not a part of ANSI/AWWA C900.

I. Introduction.

I.A. Background. This standard pertains to 4-in. through 12-in. (100-mm through 300-mm) polyvinyl chloride (PVC) pressure pipe and fabricated fittings with cast-iron-pipe-equivalent (CIP) outside diameter (OD) dimensions and with wall-thickness dimension ratios (DRs) of 14, 18, and 25. Design considerations are provided in AWWA M23, PVC Pipe—Design and Installation, which provides detailed information on PVC pipe covered by ANSI/AWWA C900. The manual includes chapters on general properties of PVC pipe; manufacturing, testing, and inspection; pressure capacity; design factors for external forces; hydraulics; receiving, storage, and handling; testing and maintenance; and service connections (tapping). Recommended installation guidance is provided in ANSI/AWWA C605, Standard for Underground Installation of Polyvinyl Chloride (PVC) Pressure Pipe and Fittings for Water.

In addition, ANSI/AWWA C907, Standard for Injection-Molded Polyvinyl Chloride (PVC) Pressure Fittings, 4 In. Through 12 In. (100 mm Through 300 mm), for Water Distribution, provides information on injection-molded fittings for use with the PVC pipes covered by ANSI/AWWA C900.

For PVC pipe and fittings diameters greater than 12 in. (300 mm), refer to ANSI/AWWA C905, Standard for Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 14 In. Through 48 In. (350 mm Through 1,200 mm), for Water Transmission and Distribution.

I.B. History. This is the fifth edition of ANSI/AWWA C900.

In 1966, AWWA appointed Committee 8350-D to study and report on the adaptability of plastic pipe for use within the water industry. The committee presented its report on June 6, 1967, at AWWA’s annual conference. The report included a recommendation that a task group be appointed to prepare standards for the use of plastic materials. The AWWA Standards Committee on Thermoplastic Pressure Pipe was established in 1968. The four editions of this standard were approved by the AWWA Board of Directors in June 1975, Jan. 1981, Jan. 1989, and June 1997, respectively.
In June 1988, the Thermoplastic Pressure Pipe Committee was divided into two separate committees: the Polyvinyl Chloride Pressure Pipe and Fittings Standards Committee and the Polyolefin Pressure Pipe and Fittings Standards Committee. This edition of ANSI/AWWA C900 was approved on June 24, 2007.

I.C. Acceptance. In May 1985, the US Environmental Protection Agency (USEPA) entered into a cooperative agreement with a consortium led by NSF International (NSF) to develop voluntary third-party consensus standards and a certification program for direct and indirect drinking water additives. Other members of the original consortium included the American Water Works Association Research Foundation (AwwaRF) and the Conference of State Health and Environmental Managers (COSHEM). The American Water Works Association (AWWA) and the Association of State Drinking Water Administrators (ASDWA) joined later.

In the United States, authority to regulate products for use in, or in contact with, drinking water rests with individual states. Local agencies may choose to impose requirements more stringent than those required by the state. To evaluate the health effects of products and drinking water additives from such products, state and local agencies may use various references, including

2. Specific policies of the state or local agency.
3. Two standards developed under the direction of NSF, NSF†/ANSI‡ 60, Drinking Water Treatment Chemicals—Health Effects, and NSF/ANSI 61, Drinking Water System Components—Health Effects.
4. Other references, including AWWA standards, Food Chemicals Codex,§ Water Chemicals Codex,§ and other standards considered appropriate by the state or local agency.

Various certification organizations may be involved in certifying products in accordance with NSF/ANSI 61. Individual states or local agencies have authority to

*Persons outside the United States should contact the appropriate authority having jurisdiction.
†NSF International, 789 N. Dixboro Road, Ann Arbor, MI 48105.
‡American National Standards Institute, 25 West 43rd Street, Fourth Floor, New York, NY 10036.
§Both publications available from National Academy of Sciences, 500 Fifth Street, N.W., Washington, DC 20001.
accept or accredit certification organizations within their jurisdiction. Accreditation of certification organizations may vary from jurisdiction to jurisdiction.

Annex A, “Toxicology Review and Evaluation Procedures,” to NSF/ANSI 61 does not stipulate a maximum allowable level (MAL) of a contaminant for substances not regulated by a USEPA final maximum contaminant level (MCL). The MALs of an unspecified list of “unregulated contaminants” are based on toxicity testing guidelines (noncarcinogens) and risk characterization methodology (carcinogens). Use of Annex A procedures may not always be identical, depending on the certifier.

ANSI/AWWA C900 does not address additives requirements. Thus, users of this standard should consult the appropriate state or local agency having jurisdiction in order to

1. Determine additives requirements, including applicable standards.
2. Determine the status of certifications by parties offering to certify products for contact with, or treatment of, drinking water.
3. Determine current information on product certification.

II. Special Issues. The material presented in this standard will be addressed in a revision to Manual AWWA M23 that is currently in progress. The material is published here to ensure that the users of this standard will have continuous access to the most up-to-date design information. AWWA M23 and this standard will not be compatible until AWWA M23 is revised. Where AWWA M23 does not match the standard, the intent of the standard takes precedence, and design matters in AWWA M23 that are inconsistent with this standard should be discussed with the manufacturer.

II.A. Pipe Selection.

II.A.1 Selection of pressure class. The minimum pressure class of the pipe or tubing selected should be equal to or greater than the system working pressure. The sum of the system working pressure and occasional surge pressure should not exceed 1.60 times the pressure class of the pipe. The system working pressure and recurring surge pressure should be analyzed using the method in appendix B. If surge pressures govern the selection of the pressure class, consideration should be given to removal of the cause of surge pressures or to the incorporation of surge suppressors in the system.

II.A.2 Recurring surge pressures. Recurring surge pressures, while present in water distribution systems, are of such low amplitude that they typically do not
govern the pipe selection. When analysis is deemed necessary, the method is found in appendix B.

III. Use of This Standard. It is the responsibility of the user of an AWWA standard to determine that the products described in that standard are suitable for use in the particular application being considered.

III.A. Purchaser Options and Alternatives. The following items should be provided by the purchaser:

1. Standard used—that is, ANSI/AWWA C900, Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 In. Through 12 In. (100 mm Through 300 mm), for Water Transmission and Distribution, of latest revision.

2. Whether compliance with NSF/ANSI 61, Drinking Water System Components—Health Effects, is required, in addition to the requirements of the Safe Drinking Water Act.

3. Details of other federal, state, or provincial, and local requirements (Sec. 4.2.1).

4. Pipe and fabricated fittings.
 a. Nominal size (for example, 4 in.).
 b. Working, occasional, and recurring surge pressures (Section 3).
 c. Pressure class or DR (see Table 1).
 d. Linear feet of each pressure class or DR for each nominal pipe size to be furnished.
 e. Number, nominal size, pressure class or DR, and configuration for fittings and couplings (for example, 20, nominal 10-in., DR 18, tees).*

5. When desired, requirements such as the following should be specified in the purchase contract:
 a. Standard lengths (Sec. 4.3.2.3).
 b. Shipping and delivery (Sec. 6.2).
 c. Affidavit of compliance (Sec. 6.3).

6. Plant inspection. If plant inspections are desired, provisions must be specified in the purchase contract (Sec. 5.3):

*NOTE: Purchase documents may allow or require the use of fittings other than those described in ANSI/AWWA C900. Some examples of compatible fittings include those covered in ANSI/AWWA Standards C907, C153, and C110.
a. Production notice. The manufacturer should be required to give adequate advance notice of when and where production of ordered materials will start.

b. Inspection aids. The manufacturer should be required to make available to the purchaser, without charge, such tools and assistance as are necessary for the inspection and handling of materials.

c. Inspection limitations. To exclude inspection of proprietary manufacturing processes, the manufacturer should be required to give advance notice to the purchaser.

III.B. Modification to Standard. Any modification to the provisions, definitions, or terminology in this standard must be provided by the purchaser.

IV. Major Revisions. Major changes made to the standard in this edition include the following:

1. The factor of safety was revised from 2.5 to 2.0.
2. The built-in surge allowance was eliminated.
3. The pressure classes were revised from 100, 150, and 200 psi (690, 950, and 1,380 kPa) to 165, 235, and 305 psi (1,140, 1,620, and 2,100 kPa), respectively.
4. Treatment of surge pressures was expanded to include occasional (emergency) surge and recurring (cyclic) surge.
5. Appendix B, Recurring (Cyclic) Surge—Figures and Design Example, was added.

V. Comments. If you have any comments or questions about this standard, please call the AWWA Volunteer and Technical Support Group at 303.794.7711, FAX 303.795.7603, write to the group at 6666 West Quincy Avenue, Denver, CO 80235-3098, or e-mail standards@awwa.org.
Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 In. Through 12 In. (100 mm Through 300 mm), for Water Transmission and Distribution

SECTION 1: GENERAL

Sec. 1.1 Scope

The pipe is primarily intended for use in transporting potable water in buried installations. The standard describes dimension ratios (DRs) 14, 18, and 25 for nominal pipe sizes ranging from 4 in. (100 mm) through 12 in. (300 mm). Pipe outside diameters (ODs) conform to those established for CI-equivalent ODs (CIOD). Pressure classes range from 165 psi (1,140 kPa) to 305 psi (2,100 kPa).

Sec. 1.2 Purpose

The purpose of this standard is to provide purchasers, manufacturers, and suppliers with the minimum requirements for PVC pressure pipe and fabricated fittings, 4 in. (100 mm) through 12 in. (300 mm), for water distribution and transmission.