Wire- and Strand-Wound, Circular, Prestressed Concrete Water Tanks

Effective date: Aug. 1, 2018.
First edition approved by AWWA Board of Directors June 22, 1986.
This edition approved Mar. 30, 2018.
Approved by American National Standards Institute May 2, 2018.
AWWA Standard

This document is an American Water Works Association (AWWA) standard. It is not a specification. AWWA standards describe minimum requirements and do not contain all of the engineering and administrative information normally contained in specifications. The AWWA standards usually contain options that must be evaluated by the user of the standard. Until each optional feature is specified by the user, the product or service is not fully defined. AWWA publication of a standard does not constitute endorsement of any product or product type, nor does AWWA test, certify, or approve any product. The use of AWWA standards is entirely voluntary. This standard does not supersede or take precedence over or displace any applicable law, regulation, or codes of any governmental authority. AWWA standards are intended to represent a consensus of the water supply industry that the product described will provide satisfactory service. When AWWA revises or withdraws this standard, an official notice of action will be placed on the first page of the Official Notice section of Journal - American Water Works Association. The action becomes effective on the first day of the month following the month of Journal - American Water Works Association publication of the official notice.

American National Standard

An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether that person has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review, and users are cautioned to obtain the latest editions. Producers of goods made in conformity with an American National Standard are encouraged to state on their own responsibility in advertising and promotional materials or on tags or labels that the goods are produced in conformity with particular American National Standards.

CAUTION NOTICE: The American National Standards Institute (ANSI) approval date on the front cover of this standard indicates completion of the ANSI approval process. This American National Standard may be revised or withdrawn at any time. ANSI procedures require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of ANSI approval. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute, 25 West 43rd Street, Fourth Floor, New York, NY 10036; (212) 642-4900, or emailing info@ansi.org.

If you are interested in using any part of this publication for training, creating a derivative work, or for any commercial use, written permission from AWWA is required. Please send your request to permissions@awwa.org.
Committee Personnel

The AWWA Standards Committee on Concrete Water Tanks, Wire-Wound Prestressed, which reviewed and approved this standard, had the following personnel for this revision:

Dominic J. Kelly, Chair
Andrew Minogue, Secretary

User Members

P.H. Bilodeau, Maine Water Company, Saco, Maine
W.J. Horst, Montgomery County Environmental Services, Dayton, Ohio
J.G. Obrist, City of Lincoln, Lincoln, Neb.

General Interest Members

J.W. Birkhoff, Birkhoff, Hendricks & Carter LLP, Dallas, Texas
D.J. Kelly, Simpson Gumpertz & Heger Inc., Waltham, Mass.
F.S. Kurtz,† Standards Engineer Liaison, AWWA, Denver, Colo.
M.W. Morin, Hazen and Sawyer, Manchester N.H.
B.J. Phelps, CH2M, Vancouver, Wash.
L.G. Soohoo, Stantec, Walnut Creek, Calif.
J.B. Walfish, James B. Walfish Structural Engineer, Honolulu, Hawaii
S. Wong, Kleinfelder, San Diego, Calif.
M.S. Zarghamee,* Simpson Gumpertz & Heger Inc., Waltham, Mass.

Producer Members

T.W. Bloomer,* DN Tanks, El Cajon, Calif.
W. Cooksey,* Preload, Louisville, Ky.
S.M. Crawford, Crom LLC, Gainesville, Fla.
T.B. Mincey,* Crom LLC, Chattanooga, Tenn.
A. Minogue, DN Tanks, Grand Prairie, Texas
R.G. Moore, Precon Corporation, Newberry, Fla.
A.E. Tripp Jr., Preload, Hauppauge, N.Y.
M.J. Vineyard,* Precon Corporation, Newberry, Fla.

*Alternate
† Liaison, nonvoting
Contents

All AWWA standards follow the general format indicated subsequently. Some variations from this format may be found in a particular standard.

<table>
<thead>
<tr>
<th>SEC.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Introduction</td>
</tr>
<tr>
<td>I.A</td>
<td>Background</td>
</tr>
<tr>
<td>I.B</td>
<td>History</td>
</tr>
<tr>
<td>I.C</td>
<td>Acceptance</td>
</tr>
<tr>
<td>II</td>
<td>Special Issues</td>
</tr>
<tr>
<td>II.A</td>
<td>Intent</td>
</tr>
<tr>
<td>II.B</td>
<td>Limitations</td>
</tr>
<tr>
<td>III</td>
<td>Use of This Standard</td>
</tr>
<tr>
<td>III.A</td>
<td>Industry Practice and Assumptions</td>
</tr>
<tr>
<td>III.B</td>
<td>Purchaser Options and Alternatives</td>
</tr>
<tr>
<td>III.C</td>
<td>Modification to Standard</td>
</tr>
<tr>
<td>IV</td>
<td>Major Revisions</td>
</tr>
<tr>
<td>V</td>
<td>Comments</td>
</tr>
</tbody>
</table>

Standard

1 General
- 1.1 Scope | 1
- 1.2 Definitions | 2
- 1.3 References | 4

2 Materials
- 2.1 Materials | 8
- 2.2 Concrete and Shotcrete | 8
- 2.3 Mixing Water | 9
- 2.4 Admixtures | 9
- 2.5 Reinforcement | 10
- 2.6 Elastomeric Materials | 12
- 2.7 Duct Material | 13

3 Design
- 3.1 Notation | 15
- 3.2 Design Method | 16
- 3.3 Design Loads | 17
- 3.4 Allowable Stresses | 19
- 3.5 Wall Design | 22
- 3.6 Dome-Roof Design | 25
- 3.7 Other Roof Designs | 30
- 3.8 Floor Design | 30
- 3.9 Footing Design | 33
- 3.10 Columns | 34
- 3.11 Tank Appurtenances | 34

4 Provisions for Earthquake-Induced Forces
- 4.1 Introduction | 38
- 4.2 Seismic Joint Types | 43
- 4.3 Seismic Design Loads | 44
- 4.4 Vertical and Horizontal Forces | 54
- 4.5 Other Effects | 55
- 4.6 Maximum Allowable Stresses and Reinforcement Requirements | 57
- 4.7 Maximum Allowable Coefficient of Friction | 58
- 4.8 Additional Requirements | 59

Copyright © 2018 American Water Works Association. All Rights Reserved.
<table>
<thead>
<tr>
<th>SEC.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>Foundation Design</td>
</tr>
<tr>
<td>4.10</td>
<td>Minimum Freeboard</td>
</tr>
<tr>
<td>4.11</td>
<td>Design for Seismic Effects of Backfill</td>
</tr>
</tbody>
</table>

5 Construction Procedures
- 5.1 Scope .. 61
- 5.2 Concrete .. 61
- 5.3 Shotcrete 66
- 5.4 Forming ... 71
- 5.5 Nonprestressed-Steel Reinforcement and Vertical Tendons | 72 |
- 5.6 Prestressing 72
- 5.7 Wall Tolerances 76
- 5.8 Restraint Cables 76
- 5.9 Waterstops 76
- 5.10 Elastomeric Bearing Pads 76
- 5.11 Sponge Fillers 77
- 5.12 Watertightness 77
- 5.13 Repairs .. 78
- 5.14 Tank Backfill 79
- 5.15 Cleanup ... 80
- 5.16 Electrical Grounding 80
- 5.17 Lightning Protection 80

6 Inspection Procedures
- 6.1 Scope .. 80
- 6.2 Field Observation During Construction 80
- 6.3 Inspection After Structure Is Constructed 83
- 6.4 Routine Inspections 84
- 6.5 Safety ... 87

Appendix
- Alternative Method of Analysis Based on UBC 1997 | 89 |

Figures
1. Example Diaphragm Sheet 10
2. Joints Between Wall and Dome Edge Ring 26
3. Typical Floor-Slab Construction Joint 31
4. Types of Joints Used Between the Wall and Its Foundation | 44 |
5. Curve for Obtaining Factor C_w for the Ratio r/H | 47 |
6. Curve for Obtaining Factor K_p for the Ratio r/H | 49 |
7. Curves for Obtaining Factor W_f/W_T and W_c/W_T for the Ratio r/H | 50 |
8. Curves for Obtaining Factor X_f/H and X_c/H for the Ratio r/H | 51 |
9. Net Effective Base-Pad Width After Deformation | 58 |
10. Diaphragm Patching Detail for Type IV Tank Core Wall | 72 |

A.1 Adjusted UBC 1997 Design Response Spectrum | 90 |

Tables
1. Allowable Stresses in Concrete and Shotcrete | 19 |
2. Metric Conversion 20
3. Importance Factor 40
4. Structural Response Coefficient for Type of Tank | 41 |
4. Soil Site Class Definitions 47
Foreword

This foreword is for information only and is not a part of ANSI/AWWA D110.

I. Introduction.

I.A. Background. The New England Water Works Association (NEWWA) established a committee in 1958 to prepare a standard specification for the design and construction of prestressed concrete water-storage tanks. The committee submitted a suggested specification to NEWWA in October 1962 as a guide to those in the water industry who wished to consider the use of these tanks.

American Concrete Institute (ACI) Committee 344 concluded eight years of committee work with a report titled “Design and Construction of Circular Prestressed Concrete Structures,” published in the ACI Journal September 1970. This report referred primarily to wire-wound tanks.

I.B. History. In the December 1972 issue of Journal AWWA, the applicability of the ACI report to water containment structures was discussed in four articles. As a result of these articles and continued discussion on the subject, a standards committee was authorized by the American Water Works Association (AWWA) to develop an AWWA standard for circular, prestressed concrete water tanks.

An AWWA standards committee on circular, prestressed concrete water tanks was appointed and held its first meeting June 19, 1974. During its first two years, the committee studied the various types of prestressed tanks then in service or under construction and determined that most were of the wire-wound type. Therefore, the committee in 1976 was directed to limit its scope to the wire- and strand-wound prestressed tank wall design. The first edition of this standard incorporated the work of ACI Committee 344 and contained additional requirements and recommendations, specifically for potable and process water, and for wastewater containment structures. The new standard, ANSI/AWWA D110-86, Standard for Wire-Wound Circular Prestressed-Concrete Water Tanks, was approved by the AWWA Board of Directors on June 22, 1986, and had an effective date of June 1, 1987. The standard has been in use since approval by the American National Standards Institute (ANSI) on Mar. 3, 1987.

The first revision of this standard was initiated by the AWWA Standards Committee during 1990 according to AWWA Standards Council policy. The revised standard ANSI/AWWA D110-95 was approved on June 22, 1995, by the AWWA Board of

* American National Standards Institute, 25 West 43rd Street, Fourth Floor, New York, NY 10036.