Nanotechnologies —
Occupational risk management
applied to engineered
nanomaterials
Part 1: Principles and approaches
This Published Document is the UK implementation of ISO/TS 12901-1:2012.

The UK participation in its preparation was entrusted to Technical Committee NTI/1, Nanotechnologies.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2013.
Published by BSI Standards Limited 2013.

ISBN 978 0 580 66580 6

ICS 07.030; 13.100

Compliance with a British Standard cannot confer immunity from legal obligations.

This Published Document was published under the authority of the Standards Policy and Strategy Committee on 31 January 2013.

Amendments issued since publication

Date Text affected
Nanotechnologies — Occupational risk management applied to engineered nanomaterials —

Part 1: Principles and approaches
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>vi</td>
</tr>
<tr>
<td>Introduction</td>
<td>vi</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Terms and definitions</td>
<td>1</td>
</tr>
<tr>
<td>3 Symbols and abbreviated terms</td>
<td>3</td>
</tr>
<tr>
<td>4 Nanomaterial types and characteristics</td>
<td>4</td>
</tr>
<tr>
<td>5 Nanomaterial hazard, exposure and risk</td>
<td>6</td>
</tr>
<tr>
<td>6 General approach to managing risks from NOAAs</td>
<td>8</td>
</tr>
<tr>
<td>7 Identification and competence of person conducting risk assessment</td>
<td>10</td>
</tr>
<tr>
<td>8 Information collection</td>
<td>11</td>
</tr>
<tr>
<td>9 Health risk evaluation</td>
<td>11</td>
</tr>
<tr>
<td>10 Control of risk</td>
<td>13</td>
</tr>
<tr>
<td>11 Measurement methods for evaluating controls</td>
<td>17</td>
</tr>
<tr>
<td>12 Health surveillance</td>
<td>22</td>
</tr>
<tr>
<td>13 Spillages and accidental releases</td>
<td>22</td>
</tr>
<tr>
<td>14 Disposal procedures</td>
<td>23</td>
</tr>
<tr>
<td>15 Prevention of fire and explosion</td>
<td>24</td>
</tr>
</tbody>
</table>
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents, a technical committee may decide to publish other types of document:

— an ISO Publicly Available Specification (ISO/PAS) represents an agreement between technical experts in an ISO working group and is accepted for publication if it is approved by more than 50% of the members of the parent committee casting a vote;

— an ISO Technical Specification (ISO/TS) represents an agreement between the members of a technical committee and is accepted for publication if it is approved by 2/3 of the members of the committee casting a vote.

An ISO/PAS or ISO/TS is reviewed after three years in order to decide whether it will be confirmed for a further three years, revised to become an International Standard, or withdrawn. If the ISO/PAS or ISO/TS is confirmed, it is reviewed again after a further three years, at which time it must either be transformed into an International Standard or be withdrawn.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/TS 12901-1 was prepared by Technical Committee ISO/TC 229, Nanotechnologies.

ISO/TS 12901 consists of the following parts, under the general title Nanotechnologies — Occupational risk management applied to engineered nanomaterials:

— Part 1: Principles and approaches
Introduction

The field of nanotechnologies continues to advance rapidly through the development of new materials, products and applications. At the same time, many questions have been raised relating to the potential risks to human health and to the environment of some of these new nanomaterials. Internationally, a large programme of research is underway to understand better and quantify these risks. Although some research is now published, this effort will need to continue for some time. However, those involved in the development and use of nanomaterials now still require to make assessment of the risks and to implement effective risk management approaches based on the best available evidence. International standardization on nanotechnologies should contribute to realizing the potential of this technology for the betterment and sustainability of our world through economic development, improving the quality of life, and also for improving and protecting public health and the environment.

This part of ISO/TS 12901 supports this by describing the principles of an occupational risk management framework and gives practical advice on its implementation based on the best current emerging evidence concerning the potential risks of nanomaterials. ISO/TS 12901-2, which is under development, describes a specific approach based on control banding to further support the implementation of good practice in this area.
Nanotechnologies — Occupational risk management applied to engineered nanomaterials —

Part 1:
Principles and approaches

1 Scope

This part of ISO/TS 12901 provides guidance on occupational health and safety measures relating to engineered nanomaterials, including the use of engineering controls and appropriate personal protective equipment, guidance on dealing with spills and accidental releases, and guidance on appropriate handling of these materials during disposal.

This part of ISO/TS 12901 is intended for use by competent personnel, such as health and safety managers, production managers, environmental managers, industrial/occupational hygienists and others with responsibility for the safe operation of facilities engaged in production, handling, processing and disposal of engineered nanomaterials.

This part of ISO/TS 12901 is applicable to engineered materials that consist of nano-objects such as nanoparticles, nanofibres, nanotubes and nanowires, as well as aggregates and agglomerates of these materials (NOAA).

The term "NOAA", as used in this part of ISO/TS 12901, applies to such components either in their original form or incorporated in materials or preparations from which they could be released to a certain extent during their lifecycle, including, as a result, downstream activities such as disposal.

2 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

2.1 agglomerate
collection of weakly bound particles or aggregates or mixtures of the two where the resulting external surface area is similar to the sum of the surface areas of the individual components

[ISO/TS 27687:2008, definition 3.2]

NOTE 1 The forces holding an agglomerate together are weak forces, for example van der Waals forces, or simple physical entanglement.

NOTE 2 Agglomerates are also termed secondary particles and the original source particles are termed primary particles.

2.2 aggregate
particle comprising strongly bonded or fused particles where the resulting external surface area may be significantly smaller than the sum of calculated surface areas of the individual components

[ISO/TS 27687:2008, definition 3.3]

NOTE 1 The forces holding an aggregate together are strong forces, for example covalent bonds, or those resulting from sintering or complex physical entanglement.

NOTE 2 Aggregates are also termed secondary particles and the original source particles are termed primary particles.