Soil quality — Parameters for geochemical modelling of leaching and speciation of constituents in soils and materials

Part 3: Extraction of aluminium oxides and hydroxides with ammonium oxalate/oxalic acid
This British Standard is the UK implementation of EN ISO 12782-3:2012.

The UK participation in its preparation was entrusted to Technical Committee EH/4, Soil quality.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2012. Published by BSI Standards Limited 2012

ISBN 978 0 580 66913 2

ICS 13.080.05

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 June 2012.

Amendments issued since publication

Date Text affected
Foreword

This document (EN ISO 12782-3:2012) has been prepared by Technical Committee ISO/TC 190 “Soil quality” in collaboration with Technical Committee CEN/TC 345 “Characterization of soils” the secretariat of which is held by NEN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by December 2012, and conflicting national standards shall be withdrawn at the latest by December 2012.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

According to the CEN/CENELEC Internal Regulations, the national standards organisations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Endorsement notice

The text of ISO 12782-3:2012 has been approved by CEN as a EN ISO 12782-3:2012 without any modification.
BS EN ISO 12782-3:2012

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>v</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>1</td>
</tr>
<tr>
<td>4 Principle</td>
<td>2</td>
</tr>
<tr>
<td>5 Apparatus</td>
<td>2</td>
</tr>
<tr>
<td>6 Reagents</td>
<td>3</td>
</tr>
<tr>
<td>7 Sample pretreatment</td>
<td>3</td>
</tr>
<tr>
<td>7.1 Sample size</td>
<td>3</td>
</tr>
<tr>
<td>7.2 Particle size reduction</td>
<td>4</td>
</tr>
<tr>
<td>7.3 Determination of the water content</td>
<td>5</td>
</tr>
<tr>
<td>8 Procedure</td>
<td>5</td>
</tr>
<tr>
<td>8.1 Preparation of the extraction solution</td>
<td>5</td>
</tr>
<tr>
<td>8.2 Extraction</td>
<td>5</td>
</tr>
<tr>
<td>8.3 Analytical determination</td>
<td>5</td>
</tr>
<tr>
<td>9 Calculation</td>
<td>5</td>
</tr>
<tr>
<td>10 Expression of results</td>
<td>6</td>
</tr>
<tr>
<td>11 Test report</td>
<td>6</td>
</tr>
<tr>
<td>Annex A (informative) Conditions regarding centrifugation</td>
<td>7</td>
</tr>
<tr>
<td>Bibliography</td>
<td>10</td>
</tr>
</tbody>
</table>
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 12782-3 was prepared by Technical Committee ISO/TC 190, Soil quality, Subcommittee SC 7, Soil and site assessment.

ISO 12782 consists of the following parts, under the general title Soil quality — Parameters for geochemical modelling of leaching and speciation of constituents in soils and materials:

— Part 1: Extraction of amorphous iron oxides and hydroxides with ascorbic acid
— Part 2: Extraction of crystalline iron oxides and hydroxides with dithionite
— Part 3: Extraction of aluminium oxides and hydroxides with ammonium oxalate/oxalic acid
— Part 4: Extraction of humic substances from solid samples
— Part 5: Extraction of humic substances from aqueous samples
Introduction

In addition to leaching procedures for subsequent chemical and ecotoxicological testing of soil and other materials including waste, predictive models are becoming indispensable tools in the environmental risk assessment of these materials. Models are particularly required when the results of laboratory leaching tests are to be translated to specific scenarios in the field, with regard to assessing the risks of both contaminant migration and bioavailability.

In the past few years, geochemical models have been shown to be valuable tools to be combined with the data obtained from characterization leaching standards, such as pH-dependence and percolation tests. These models have the advantage of being based on fundamental thermodynamic parameters that have a general validity. In order to enable extrapolation of laboratory leaching data to the mobility and/or bioavailability of a constituent in a specific field scenario, these models require additional input parameters for specific soil properties (see Figure 1).

Key
1 experiment
2 geochemical speciation modelling
3 available metal concentration
4 dissolved humic substances
5 reactive (solid) surfaces
6 database with stability constants
7 computer program
8 assumptions

Figure 1 — Relationships between experimental data, as obtained from laboratory leaching/extraction tests, and geochemical modelling of the speciation of a heavy metal in the environment (modified after M. Gfeller & R. Schulin, ETH, Zürich)

Characterization leaching standards provide information on the concentrations of the contaminant of interest as a function of, in particular, pH and liquid/solid (L/S) ratio. In addition, a more complete analysis of the leachates also provides information on the major ion composition and dissolved organic carbon (DOC), parameters that are particularly important for the chemical speciation of constituents through processes such as precipitation, complexation and competition for adsorption on reactive mineral and organic surfaces in the soil. As illustrated
in Figure 1 for the example of copper, geochemical modelling enables calculation of the metal distribution among these different chemical species in the system of interest. This provides necessary information for risk-assessment purposes, as these different chemical forms play distinct roles in the mobility and bioavailability of the metal in the soil. In addition to information obtained from the leaching standards (in their current state of development/definition), two additional types of information are required.

a) The “available” (sometimes also referred to as “active” or “exchangeable”) concentration of the constituent in the solid phase, as opposed to the total concentration determined by acid destruction of the solid matrix. This “available” concentration can be obtained by leaching at low pH, a condition that can be obtained by extending the pH range in the pH-dependent leaching test (ISO/TS 21268-4) down to pH ≈ 0.5 to pH ≈ 1.

b) The concentration of reactive organic and mineral surfaces in the soil, which constitute the major binding (adsorption) sites for most constituents in the soil matrix.

The major reactive surfaces that control the binding of constituents by sorption processes to the soil matrix are particulate organic matter and iron and aluminium (hydr)oxides. It is generally accepted that the reactivity of these mineral and organic surfaces can strongly vary as a function of their specific surface area/crystallinity [iron and aluminium (hydr)oxides] and composition (organic matter). When the results are intended to be used for the above-described purposes of geochemical modelling in conjunction with leaching tests, it is important that the methods be selective for reactive surfaces for which generic thermodynamic adsorption parameters are also available for the most important major and trace elements.

These reactive surfaces have been identified in soils, as well as in a variety of other materials for which the leaching of constituents is of relevance. It has been shown that the binding properties of these surfaces play a generic role in the speciation and leaching of constituents among these different materials. As an example, a similar geochemical modelling approach, using model input from the partial or complete ISO 12782 series, has been successfully applied to different soils[5], amended soils[6][7], municipal incinerator bottom ash[8], steel slag[9][10], bauxite residues[11], and recycled concrete aggregate[12]. Hence, the scope of the ISO 12782 series extends from soils to materials including soil amendments and waste materials.

This part of ISO 12782 aims to determine amorphous aluminium (hydr)oxides in soil and materials. The procedure is based on Reference [13]. Although generic thermodynamic adsorption parameters for aluminium (hydr)oxides are not available, such parameters are available for amorphous iron (hydr)oxides with similar structure and properties[14]. These parameters have been successfully applied to aluminium (hydr)oxides, as justified and demonstrated in Reference [15].

Thermodynamic parameters for other adsorption models other than those used in Reference [14] are also available in the literature and may also be used to model the binding of constituents to aluminium (hydr)oxides.
Soil quality — Parameters for geochemical modelling of leaching and speciation of constituents in soils and materials —

Part 3:
Extraction of aluminium oxides and hydroxides with ammonium oxalate/oxalic acid

1 Scope

This part of ISO 12782 specifies the determination of the content of “reactive” aluminium in the form of amorphous aluminium oxides and hydroxides in soil and other materials by extraction with ammonium oxalate/oxalic acid. Other materials also include waste. The content of “reactive” aluminium can be used as input in geochemical models.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3696, Water for analytical laboratory use — Specification and test methods

ISO 5667-3, Water quality — Sampling — Part 3: Preservation and handling of water samples

ISO 10381-1, Soil quality — Sampling — Part 1: Guidance on the design of sampling programmes

ISO 10381-2, Soil quality — Sampling — Part 2: Guidance on sampling techniques

ISO 10381-3, Soil quality — Sampling — Part 3: Guidance on safety

ISO 10381-4, Soil quality — Sampling — Part 4: Guidance on the procedure for investigation of natural, near-natural and cultivated sites

ISO 10381-5, Soil quality — Sampling — Part 5: Guidance on the procedure for the investigation of urban and industrial sites with regard to soil contamination

ISO 10381-6, Soil quality — Sampling — Part 6: Guidance on the collection, handling and storage of soil under aerobic conditions for the assessment of microbiological processes, biomass and diversity in the laboratory

ISO 11464, Soil quality — Pretreatment of samples for physico-chemical analysis

ISO 11465, Soil quality — Determination of dry matter and water content on a mass basis — Gravimetric method

EN 14899, Characterization of waste — Sampling of waste materials — Framework for the preparation and application of a sampling plan

EN 15002, Characterization of waste — Preparation of test portions from the laboratory sample

CEN/TR 15310-3, Characterization of waste — Sampling of waste materials — Part 3: Guidance on procedures for sub-sampling in the field

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.