Mechanical vibration — Rotor balancing
Part 32: Shaft and fitment key convention
This British Standard is the UK implementation of ISO 21940-32:2012. It supersedes BS 7130:1989 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee GME/21/5, Mechanical vibration, shock and condition monitoring - Vibration of machines.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2012. Published by BSI Standards Limited 2012

ISBN 978 0 580 71415 3

ICS 21.120.10; 21.120.40

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 April 2012.

Amendments issued since publication

Date Text affected
Mechanical vibration — Rotor balancing —

Part 32: Shaft and fitment key convention

Vibrations mécaniques — Équilibrage des rotors —
Partie 32: Convention relative aux clavettes d’arbres et aux éléments rapportés
Contents

Foreword .. iv
Introduction .. vi
1 Scope .. 1
2 Normative references .. 1
3 Terms and definitions ... 1
4 Half-key convention ... 1
5 Marking ... 3
6 Implementation of the half-key convention .. 4
Annex A (normative) Specifications for the half-key convention ... 5
Annex B (informative) Practical considerations for making half-keys and usage of keys 7
Annex C (informative) Comparison between shaft and fitment key conventions 13
Bibliography .. 16
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 21940-32 was prepared by Technical Committee ISO/TC 108, Mechanical vibration, shock and condition monitoring, Subcommittee SC 2, Measurement and evaluation of mechanical vibration and shock as applied to machines, vehicles and structures.

This first edition of ISO 21940-32 cancels and replaces ISO 8821:1989, of which it constitutes an editorial revision. The main change is deletion of statements relating to the implementation date, transition period and key convention usage in the past.

ISO 21940 consists of the following parts, under the general title Mechanical vibration — Rotor balancing:

— Part 1: Introduction
— Part 2: Vocabulary
— Part 11: Procedures and tolerances for rotors with rigid behaviour
— Part 12: Procedures and tolerances for rotors with flexible behaviour
— Part 13: Criteria and safeguards for the in-situ balancing of medium and large rotors
— Part 14: Procedures for assessing balance errors

1) Revision of ISO 19499:2007, Mechanical vibration — Balancing — Guidance on the use and application of balancing standards
2) Revision of ISO 1925:2001, Mechanical vibration — Balancing — Vocabulary
4) Revision of ISO 11342:1998, Mechanical vibration — Methods and criteria for the mechanical balancing of flexible rotors
5) Revision of ISO 20806:2009, Mechanical vibration — Criteria and safeguards for the in-situ balancing of medium and large rotors
— Part 21: Description and evaluation of balancing machines

— Part 23: Enclosures and other protective measures for balancing machines

— Part 31: Susceptibility and sensitivity of machines to unbalance

— Part 32: Shaft and fitment key convention

7) Revision of ISO 2953:1999, Mechanical vibration — Balancing machines — Description and evaluation
8) Revision of ISO 7475:2002, Mechanical vibration — Balancing machines — Enclosures and other protective measures for the measuring station
9) Revision of ISO 10814:1996, Mechanical vibration — Susceptibility and sensitivity of machines to unbalance
10) Revision of ISO 8821:1989, Mechanical vibration — Balancing — Shaft and fitment key convention
Introduction

It is often impossible or economically unreasonable to balance rotors with fitments after they have been assembled; the rotor components which also may originate from different suppliers are therefore balanced separately. An appropriate balance tolerance is applied to each component so that, when shaft and fitment(s) are coupled together, the rotor assembly meets the required balance tolerance and/or vibration limit. For coupling the fitment(s) to the shaft, different methods are applied, a very common one uses keys. If, however, a different key convention has been used when balancing the shaft than that one used for balancing the fitment(s), it is quite likely that the rotor assembly has a balance error influencing its residual unbalance.

There are three methods, or key conventions, for balancing shafts and fitments coupled together with keys:

— full-key convention;
— half-key convention;
— no-key convention.

This part of ISO 21940 unifies the key conventions used throughout the world and gives instructions on a marking of components balanced in accordance with the key convention applied. When consistently used, it results in compatibility of shafts and fitments so that they can be balanced by different suppliers and, after being assembled, the balance tolerance and/or vibration limit for the rotor assembly is met.
Mechanical vibration — Rotor balancing —

Part 32:
Shaft and fitment key convention

1 Scope

This part of ISO 21940 specifies one convention for balancing the individual components (shaft and fitments) of a keyed rotor assembly. This provides compatibility of all balanced components so that when they have been assembled the overall balance tolerance and/or vibration limit for the rotor assembly is met.

This part of ISO 21940 specifies that half-keys be used when balancing the individual components of a keyed rotor assembly. It also specifies a marking of the components balanced in accordance with the key convention used.

This part of ISO 21940 applies to rotors balanced in a balancing machine, in their own bearings or in situ. The key convention can also be applied when measuring the residual unbalance and/or vibration of rotors with keyways, but to which fitments have not yet been assembled.

In addition to applying to keys of constant rectangular or square cross-section mounted parallel to the shaft centreline, this part of ISO 21940 also applies to keys mounted on tapered shaft surfaces, to woodruff, gibhead, dowel and other special keys. The principle of the half-key convention is applied as is appropriate to the particular shape and location of the special key.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1925, Mechanical vibration — Balancing — Vocabulary

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 1925 apply.

4 Half-key convention

This part of ISO 21940 specifies that the half-key convention be followed. According to this convention a half-key shall be used in the keyway of the shaft having one keyway while balancing the shaft without the fitment. A complementary half-key shall be used while balancing the corresponding fitment on a balancing mandrel, provided the mandrel has no keyways. If the mandrel has keyways, the methods described in A.1.3 shall be followed. If at one cross-section, shaft and fitment each have two keyways the methods described in A.1.4 shall be followed. The axial location of the centre of gravity of the half-key should be the same as that of the full key in the final assembly.

NOTE Table 1 shows examples of various types of shaft keyways and full keys of constant rectangular or square cross-section.

1) To become ISO 21940-2 when revised.