Electrical insulating materials – Determination of the effects of ionising radiation

Part 5: Procedures for assessment of ageing in service
This British Standard is the UK implementation of EN 60544-5:2012. It is identical to IEC 60544-5:2011. It supersedes BS EN 60544-5:2003 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee GEL/112, Evaluation and qualification of electrical insulating materials and systems.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2012

Published by BSI Standards Limited 2012

ISBN 978 0 580 75046 5

ICS 29.035.01

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 June 2012.

Amendments issued since publication

Amd. No. Date Text affected
Electrical insulating materials -
Determination of the effects of ionizing radiation -
Part 5: Procedures for assessment of ageing in service
(IEC 60544-5:2011)
Foreword

The following dates are fixed:

- latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement (dop) 2012-10-18
- latest date by which the national standards conflicting with the document have to be withdrawn (dow) 2015-01-18

This document supersedes EN 60544-5:2003.

EN 60544-5:2012 constitutes an editorial revision to align it with standards recently developed by SC 45A as well as with other parts in the EN 60544 series.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 60544-5:2011 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following note has to be added for the standard indicated:

IEC 60544-4 NOTE Harmonized as EN 60544-4.
Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

<table>
<thead>
<tr>
<th>Publication</th>
<th>Year</th>
<th>Title</th>
<th>EN/HD</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60544-1</td>
<td>-</td>
<td>Electrical insulating materials - Determination of the effects of ionizing radiation - Part 1: Radiation interaction and dosimetry</td>
<td>EN 60544-1</td>
<td>-</td>
</tr>
<tr>
<td>IEC 60544-2</td>
<td>-</td>
<td>Guide for determining the effects of ionizing radiation on insulating materials - Part 2: Procedures for irradiation and test</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IEC 60780</td>
<td>-</td>
<td>Nuclear power plants - Electrical equipment of the safety system - Qualification</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IEC/TR 61244-1</td>
<td>-</td>
<td>Determination of long-term radiation ageing in polymers - Part 1: Techniques for monitoring diffusion-limited oxidation</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IEC/TR 61244-2</td>
<td>-</td>
<td>Determination of long-term radiation ageing in polymers - Part 2: Procedures for predicting ageing at low dose rates</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
INTRODUCTION ..5
1 Scope and object ..6
2 Normative references ..6
3 Terms and definitions ...7
4 Background ..7
 4.1 General ..7
 4.2 Diffusion limited oxidation (DLO) ..7
 4.3 Dose rate effects (DRE) ...8
 4.4 Accelerated radiation ageing ...8
 4.5 Accelerated thermal ageing ..9
5 Approaches to ageing assessment ...9
6 Identifying components of concern ...9
 6.1 General ...9
 6.2 Priorities for ageing management ...9
 6.3 Environmental monitoring ...10
 6.4 Localized severe environments ..10
 6.5 Worst case components ...10
7 Condition monitoring techniques ...10
 7.1 General ...10
 7.2 Establishing correlation curves for CM methods ...11
 7.3 CM methods ...11
 7.4 Using CM for short-term troubleshooting ..11
 7.5 Using CM for long-term degradation assessment ...13
8 Predictive modelling ..14
9 Sample deposit ..15
 9.1 General ...15
 9.2 Requirements of a deposit ...15
 9.3 Pre-ageing samples for a deposit ..15
 9.4 Installation of an sample deposit ..15
 9.5 Testing of samples from the deposit ...16
 9.6 Determination of sampling intervals ..16
 9.7 Real time aged materials ..17
Annex A (informative) Example of a CM correlation curve ..18
Annex B (informative) Use of a deposit ..19
Bibliography ..20

Figure 1 – Development of ageing data on changes in tensile elongation and a condition indicator (e.g. indenter modulus) – Schematic ..12
Figure 2 – Correlation curve derived from data in Figure 1 – Schematic ..13
Figure 3 – Estimation of elongation from a correlation curve ...14
Figure 4 – Modification of sampling interval dependent on values of the CM indicator17
Figure A.1 – Correlation curve for indenter modulus against tensile elongation for a CSPE cable jacket material [18] ...18