Cylindrical helical springs made from round wire and bar — Calculation and design
Part 1: Compression springs
This British Standard is the UK implementation of EN 13906-1:2013.
It supersedes BS EN 13906-1:2002 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee FME/9/3, Springs.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2013. Published by BSI Standards Limited 2013

ISBN 978 0 580 80598 1

ICS 21.160

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 July 2013.

Amendments issued since publication

Date Text affected
Cylindrical helical springs made from round wire and bar -
Calculation and design - Part 1: Compression springs

This European Standard was approved by CEN on 30 May 2013.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.
Contents

Foreword ... 3
Introduction ... 4
1 Scope ... 5
2 Normative references ... 5
3 Terms, definitions, symbols, units and abbreviated terms ... 5
4 Theoretical compression spring diagram .. 8
5 Design principles ... 9
6 Types of Loading .. 10
7 Stress correction factor k ... 12
8 Material property values for the calculation of springs .. 13
9 Calculation formulae .. 14
10 Permissible torsional stresses .. 19
Annex A (informative) Examples of relaxation for cold coiled springs ... 29
Bibliography ... 35
Foreword

This document (EN 13906-1:2013) has been prepared by Technical Committee CEN/TC 407 “Project Committee - Cylindrical helical springs made from round wire and bar - Calculation and design”, the secretariat of which is held by AFNOR.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by January 2014, and conflicting national standards shall be withdrawn at the latest by January 2014.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN 13906-1:2002.

This European Standard has been prepared by the initiative of the Association of the European Spring Federation ESF.

This European Standard constitutes a revision of EN 13906-1:2002 for which it has been technically revised. The main modifications are listed below:

— updating of the normative references,
— technical corrections.

EN 13906 consists of the following parts, under the general title Cylindrical helical springs made from round wire and bar — Calculation and design:

— Part 1: Compression springs;
— Part 2: Extension springs;
— Part 3: Torsion springs.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.
Introduction

The revision of EN 13906 series have been initiated by the Association of the European Spring Federation – ESF – in order to correct the technical errors which are in the published standards and to improve them according to the state of the art. However, the revision of the figures is not take part of this work due to the lack of shared (mutual) data to update them. Nevertheless, the customers can have updated data from the manufacturers.
1 Scope

This European Standard specifies the calculation and design of cold and hot coiled cylindrical helical compression springs with a linear characteristic, made from round wire and bar of constant diameter with values according to Table 1, and in respect of which the principal loading is applied in the direction of the spring axis.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Cold coiled compression spring</th>
<th>Hot coiled compression spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire or bar diameter</td>
<td>$d \leq 20 \text{ mm}$</td>
<td>$8 \text{ mm} \leq d \leq 100 \text{ mm}$</td>
</tr>
<tr>
<td>Number of active coils</td>
<td>$n \geq 2$</td>
<td>$n \geq 3$</td>
</tr>
<tr>
<td>Spring index</td>
<td>$4 \leq w \leq 20$</td>
<td>$3 \leq w \leq 12$</td>
</tr>
</tbody>
</table>

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 10270-1, Steel wire for mechanical springs — Part 1: Patented cold drawn unalloyed spring steel wire
EN 10270-2, Steel wire for mechanical springs — Part 2: Oil hardened and tempered spring steel wire
EN 10270-3, Steel wire for mechanical springs — Part 3: Stainless spring steel wire
EN 10089, Hot-rolled steels for quenched and tempered springs — Technical delivery conditions
EN 12166, Copper and copper alloys — Wire for general purposes
ISO 26910-1, Springs — Shot peening — Part 1: General procedures

3 Terms, definitions, symbols, units and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in EN ISO 26909:2010 and the following apply.

3.1.1 spring
mechanical device designed to store energy when deflected and to return the equivalent amount of energy when released

[SOURCE: EN ISO 26909:2010, 1.1]

3.1.2 compression spring
spring (1.1) that offers resistance to a compressive force applied axially

[SOURCE: EN ISO 26909:2010, 1.2]