Specification of the radio data system (RDS) for VHF/FM sound broadcasting in the frequency range from 87,5 MHz to 108,0 MHz
This British Standard is the UK implementation of EN 62106:2015. It is identical to IEC 62106:2015. It supersedes BS EN 62106:2009, which will be withdrawn on 4 May 2018.

The UK participation in its preparation was entrusted to Technical Committee EPL/100, Audio, video and multimedia systems and equipment.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2015.
Published by BSI Standards Limited 2015

ISBN 978 0 580 80690 2
ICS 33.060.20; 33.170; 35.240.99

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 May 2015.

Amendments/corrigenda issued since publication

<table>
<thead>
<tr>
<th>Date</th>
<th>Text affected</th>
</tr>
</thead>
</table>
This is a preview of "BS EN 62106:2015". Click here to purchase the full version from the ANSI store.

This European Standard was approved by CENELEC on 2015-05-04. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.
The text of document 100/2122A/CDV, future edition 3 of IEC 62106, prepared by Technical Area 1 “Terminals for audio, video and data services and contents” of IEC/TC 100 "Audio, video and multimedia systems and equipment" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 62106:2015.

The following dates are fixed:

- latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement (dop) 2016-02-04
- latest date by which the national standards conflicting with the document have to be withdrawn (dow) 2018-05-04

This document supersedes EN 62106:2009.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 62106:2015 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following note has to be added for the standard indicated:

- IEC 62634 NOTE Harmonized as EN 62634.
Normative references to international publications with their corresponding European publications

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 When an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu

<table>
<thead>
<tr>
<th>Publication</th>
<th>Year</th>
<th>Title</th>
<th>EN/HD</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO/IEC 10646</td>
<td>2014</td>
<td>Information technology - Universal Coded Character Set (UCS)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ISO 14819 Series</td>
<td></td>
<td>Intelligent transport systems - Traffic and travel information messages via traffic message coding</td>
<td>EN ISO 14819 Series</td>
<td></td>
</tr>
<tr>
<td>ITU-R Recommendation BS.450-3</td>
<td></td>
<td>Transmission standards for FM sound broadcasting at VHF</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ITU-R Recommendation BS.643-3</td>
<td></td>
<td>Radio data system for automatic tuning and other applications in FM radio receivers for use with pilot-tone system</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ITU-T Recommendation E.212</td>
<td></td>
<td>The international identification plan for public networks and subscriptions: For the three digit Mobile Country Codes used in Annex M of this RDS specification refer to Complement to ITU-T Rec. E.212 (05/2004) published by ITU Geneva as Annex to ITU Operational Bulletin 897, dated 2007-12-01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>US NRSC-4-B</td>
<td></td>
<td>National Radio Systems Committee - NRSC-4-A: United States RBDS standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETSI EN 301 700</td>
<td></td>
<td>Digital Audio Broadcasting (DAB); VHF/FM Broadcasting: cross-referencing to simulcast DAB services by RDS-ODA 147</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>..</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>..</td>
</tr>
<tr>
<td>1</td>
<td>Scope ..</td>
</tr>
<tr>
<td>2</td>
<td>Normative references ...</td>
</tr>
<tr>
<td>3</td>
<td>Abbreviations ..</td>
</tr>
<tr>
<td>4</td>
<td>Modulation characteristics of the data channel (physical layer) ...</td>
</tr>
<tr>
<td>4.1</td>
<td>General ..</td>
</tr>
<tr>
<td>4.2</td>
<td>Subcarrier frequency ...</td>
</tr>
<tr>
<td>4.3</td>
<td>Subcarrier phase ..</td>
</tr>
<tr>
<td>4.4</td>
<td>Subcarrier level ..</td>
</tr>
<tr>
<td>4.5</td>
<td>Method of modulation ...</td>
</tr>
<tr>
<td>4.6</td>
<td>Clock-frequency and data-rate ...</td>
</tr>
<tr>
<td>4.7</td>
<td>Differential coding ..</td>
</tr>
<tr>
<td>4.8</td>
<td>Data-channel spectrum shaping ...</td>
</tr>
<tr>
<td>5</td>
<td>Baseband coding (data-link layer) ...</td>
</tr>
<tr>
<td>5.1</td>
<td>Baseband coding structure ...</td>
</tr>
<tr>
<td>5.2</td>
<td>Order of bit transmission ...</td>
</tr>
<tr>
<td>5.3</td>
<td>Error protection ..</td>
</tr>
<tr>
<td>5.4</td>
<td>Synchronisation of blocks and groups ...</td>
</tr>
<tr>
<td>6</td>
<td>Message format (session and presentation layers) ...</td>
</tr>
<tr>
<td>6.1</td>
<td>Addressing ..</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Design principles ...</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Principal features ..</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Group types ..</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Open data channel/Applications Identification ...</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Coding of the group types ...</td>
</tr>
<tr>
<td>6.2</td>
<td>Coding of information ..</td>
</tr>
<tr>
<td>6.2.1</td>
<td>General ..</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Coding of information for control ...</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Coding and use of information for display ...</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Coding of clock time and date (CT) ...</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Coding of information for Transparent Data Channels (TDC) ...</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Coding of information for in house applications (IH) ...</td>
</tr>
<tr>
<td>6.2.7</td>
<td>Coding of Radio Paging (RP) ...</td>
</tr>
<tr>
<td>6.2.8</td>
<td>Coding of Emergency Warning Systems (EWS) ...</td>
</tr>
<tr>
<td>7</td>
<td>Description of features ...</td>
</tr>
<tr>
<td>7.1</td>
<td>Alternative frequencies list (AF) ...</td>
</tr>
<tr>
<td>7.2</td>
<td>Clock Time and date (CT) ...</td>
</tr>
<tr>
<td>7.3</td>
<td>Decoder Identification (DI) and dynamic PTY Indicator (PTYI) ...</td>
</tr>
<tr>
<td>7.4</td>
<td>Extended Country Code (ECC) ...</td>
</tr>
<tr>
<td>7.5</td>
<td>Enhanced Other Networks information (EON) ...</td>
</tr>
<tr>
<td>7.6</td>
<td>Emergency Warning System (EWS) ...</td>
</tr>
<tr>
<td>7.7</td>
<td>In House application (IH) ...</td>
</tr>
<tr>
<td>7.8</td>
<td>Music Speech switch (MS) ...</td>
</tr>
<tr>
<td>7.9</td>
<td>Open Data Applications (ODA) ...</td>
</tr>
<tr>
<td>7.10</td>
<td>Programme Identification (PI) ...</td>
</tr>
</tbody>
</table>
This is a preview of "BS EN 62106:2015". Click here to purchase the full version from the ANSI store.

7.11 Programme Item Number (PIN) ... 59
7.12 Programme Service name (PS) .. 59
7.13 Programme Type (PTY) ... 59
7.14 Programme Type Name (PTYN) .. 59
7.15 Radio Paging (RP) ... 59
7.16 RadioText (RT) ... 59
7.17 Enhanced RadioText (eRT) ... 59
7.18 RadioText Plus (RT+) .. 59
7.19 Traffic Announcement identification (TA) 59
7.20 Transparent Data Channels (TDC) ... 59
7.21 Traffic Message Channel (TMC) .. 59
7.22 Traffic Programme identification (TP) .. 59
8 Marking .. 60
Annex A (normative) Offset words to be used for group and block synchronisation 62
Annex B (informative) Theory and implementation of the modified shortened cyclic code ... 63
B.1 General ... 63
B.2 Encoding procedure ... 63
B.2.1 Theory .. 63
B.2.2 Shift-register implementation of the encoder 65
B.3 Decoding procedure ... 65
B.3.1 Theory .. 65
B.3.2 Implementation of the decoder ... 67
Annex C (informative) Implementation of group and block synchronisation using the modified shortened cyclic code ... 69
C.1 Theory ... 69
C.1.1 Acquisition of group and block synchronisation 69
C.1.2 Detection of loss of synchronisation 69
C.2 Shift register arrangement for deriving group and block synchronisation information ... 69
Annex D (normative) Programme identification codes and extended country codes 72
D.1 General ... 72
D.2 PI structure ... 72
D.3 Extended country codes ... 72
D.4 Country codes: ‘Nibble 1’ ... 72
D.5 Programme in terms of area coverage (codes for fixed location transmitters only): ‘Nibble 2’ ... 72
D.6 Programme reference number: ‘Nibbles 3 and 4’ 76
D.7 PI codes for low-power short range transmitting devices 77
Annex E (normative) Basic and extended RDS character sets 78
Annex F (normative) Programme type codes 79
Annex G (informative) Conversion between time and date conventions 101
Annex H (informative) ARI (Autofahrer-Rundfunk-Information) system – Discontinuation ... 103
Annex J (normative) Language identification 104
Annex K (informative) RDS logo .. 106
Annex L (informative) Open data registration 107
Annex M (normative) Coding of Radio Paging (RP) 110
M.1 General .. 110
M.2 Basic paging protocol .. 110
 M.2.1 Coding characteristics for paging ... 110
 M.2.2 Transmitter network group designation ... 111
 M.2.3 Locking to a channel ... 113
 M.2.4 Loss of synchronization .. 113
 M.2.5 Group type 7A message format ... 113
M.3 Enhanced paging ... 119
 M.3.1 General .. 119
 M.3.2 Multi-operator/area paging ... 119
 M.3.3 Extension of paging addressing mode ... 126
 M.3.4 Battery saving mode .. 126
 M.3.5 Group type 7A message format ... 129
 M.3.6 Address notification bit versus pager individual address 138
M.4 Examples of the traffic handling capacity of the specified radio paging system .. 139
Annex N (normative) Country codes and extended country codes for countries outside the European Broadcasting Area ... 142
 N.1 African Broadcasting Area .. 142
 N.2 Allocations of symbols for countries in ITU Region 2 144
 N.3 Allocations of symbols for countries in ITU Region 3 146
Annex P (normative) Coding of RadioText Plus information (RT+) 148
 P.1 General .. 148
 P.2 Definitions .. 148
 P.3 RT+ tag .. 149
 P.4 RT+ information elements and data model ... 150
 P.4.1 General .. 150
 P.4.2 List of RT/eRT content types .. 150
 P.4.3 Structures of RT+ messages .. 151
 P.4.4 Receiver data model ... 152
 P.5 Coding RT+ in ODA groups ... 153
 P.5.1 General .. 153
 P.5.2 RT+ identification (Group type 3A) .. 154
 P.5.3 Coding of the RT+ tag .. 155
 P.5.4 Clearing of RT+ messages .. 156
 P.6 Broadcasting conventions ... 159
 P.7 Receiving conventions ... 159
 P.8 Marking .. 160
Annex Q (normative) Coding of enhanced RadioText (eRT) 161
 Q.1 General .. 161
 Q.2 Coding eRT in ODA groups ... 161
 Q.2.1 General .. 161
 Q.2.2 eRT identification (Group type 3A) .. 161
 Q.2.3 Coding of the eRT text string .. 162
 Q.3 Broadcasting conventions ... 164
 Q.4 Receiving conventions ... 165
 Q.5 Marking .. 165
Annex R (informative) RBDS in the USA .. 166
Annex S (normative) List of RDS specific abbreviations 167
Figure 1 – Block diagram of radio-data equipment at the transmitter ...14
Figure 2 – Block diagram of a typical radio-data receiver/decoder ..15
Figure 3 – Amplitude response of the specified transmitter or receiver data-shaping filter 17
Figure 4 – Amplitude response of the combined transmitter and receiver data-shaping filters ...18
Figure 5 – Spectrum of biphase coded radio-data signals ...18
Figure 6 – Time-function of a single biphase symbol ..19
Figure 7 – 57 kHz radio-data signals ..19
Figure 8 – Structure of the baseband coding ..20
Figure 9 – Message format and addressing ...20
Figure 10 – ODA version A groups ..26
Figure 11 – ODA version B groups ..27
Figure 12 – Basic tuning and switching information – Type 0A group ..27
Figure 13 – Basic tuning and switching information – Type 0B group ..27
Figure 14 – Programme item number and slow labelling codes – Type 1A group29
Figure 15 – Programme Item Number – Type 1B group ...30
Figure 16 – RadioText – Type 2A group ..30
Figure 17 – RadioText – Type 2B group ..31
Figure 18 – Application identification for open data – Type 3A group ..32
Figure 19 – Open data – Type 3B group ..33
Figure 20 – Clock-time and date transmission – Type 4A group ...34
Figure 21 – Open data – Type 4B group ..34
Figure 22 – Transparent data channels – Type 5A group ..35
Figure 23 – Transparent data channels – Type 5B group ..35
Figure 24 – In-house applications – Type 6A and 6B group ..36
Figure 25 – Radio paging – Type 7A group ..36
Figure 26 – Type 7B group ..37
Figure 27 – Traffic message channel – Type 8A group ...37
Figure 28 – Open data – Type 8B group ..37
Figure 29 – Allocation of EWS message bits – Type 9A group ...38
Figure 30 – Open data – Type 9B group ..38
Figure 31 – Programme type name PTYN – Type 10A group ...39
Figure 32 – Open data – Type 10B group ...39
Figure 33 – Open data – Type 11A and 11B groups ..40
Figure 34 – Open data – Type 12A and 12B groups ..40
Figure 35 – Enhanced paging information – Type 13A group ..41
Figure 36 – Open data – Type 13B group ...42
Figure 37 – Enhanced other networks information – Type 14A groups ..42
Figure 38 – Enhanced Other Networks information – Type 14B groups ...43
Figure 39 – Open data – Type 15A group ...43
Figure 40 – Fast basic tuning and switching information – Type 15B group ..44
This is a preview of "BS EN 62106:2015". Click here to purchase the full version from the ANSI store.
Figure P.1 – RT+ information of the category 'Item' (see Table P.2) will be attached to the programme elements Item 1 and Item 2 .. 153
Figure P.2 – RT+ information of the category 'Item' will be attached to the programme elements Item 1 and Item 2, but not to the programme element News .. 153
Figure P.3 – RT+ information of the category 'Item' will be attached only to the programme element Item 1, but not to the programme element Talk .. 153
Figure P.4 – Bit allocation for group 3A (message bits and AID) .. 154
Figure P.5 – Coding of the message bits of the application group .. 155
Figure Q.1 – Bit allocation for group 3A (message bits and AID) .. 162
Figure Q.2 – Coding of the message bits of the application group .. 163

Table 1 – Encoding rules .. 16
Table 2 – Decoding rules .. 16
Table 3 – Group types .. 23
Table 4 – Main feature repetition rates ... 24
Table 5 – Group repetition rates .. 25
Table 6 – ODA group availability signalled in type 3A groups .. 26
Table 7 – STY codes ... 41
Table 8 – Codes for TP and TA .. 45
Table 9 – Bit \(d_0 \) to \(d_3 \) meanings .. 45
Table 10 – VHF code table .. 46
Table 11 – Special meanings code table .. 46
Table 12 – Code tables according to ITU regions; LF/MF code table – For ITU regions 1 and 3 (9 kHz spacing) ... 46
Table 13 – Code tables according to ITU regions; MF code table – For ITU region 2 (10 kHz spacing) ... 47
Table A.1 – Offset word codes .. 62
Table B.1 – Offset word syndromes using matrix of Figure B.3 67
Table C.1 – Offset word syndromes for group and block synchronisation 71
Table D.1 – PI code structure ... 72
Table D.2 – European Broadcasting Area – Symbols used for ECC and PI country codes ... 75
Table D.3 – Area coverage codes .. 76
Table D.4 – Programme reference number codes .. 76
Table D.5 – PI codes for short range transmitting devices ... 77
Table E.1 – Basic RDS character set .. 78
Table E.2 – Non-transmitted UCS-2 equivalents (1 of 7) .. 79
Table E.3 – Extended RDS character set, for eRT only (1 of 13) 85
Table F.1 – Programme type codes and corresponding terms for display 98
Table G.1 – Symbols used .. 101
Table J.1 – Language identification codes .. 104
Table M.1 – Pager group codes .. 111
Table M.2 – Codes for additional message content ... 114
Table M.3 – Paging segment address codes for 10 and 18 digit messages 115
Table M.4 – Paging segment address codes for alphanumeric messages 116
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.5</td>
<td>Paging segment address codes for international 15 digit messages</td>
<td>117</td>
</tr>
<tr>
<td>M.6</td>
<td>Paging segment address codes for functions message</td>
<td>118</td>
</tr>
<tr>
<td>M.7</td>
<td>Sub-usage codes</td>
<td>122</td>
</tr>
<tr>
<td>M.8</td>
<td>Group designation codes</td>
<td>126</td>
</tr>
<tr>
<td>M.9</td>
<td>Cycle selection codes</td>
<td>127</td>
</tr>
<tr>
<td>M.10</td>
<td>Message sorting codes</td>
<td>128</td>
</tr>
<tr>
<td>M.11</td>
<td>Codes for message types</td>
<td>130</td>
</tr>
<tr>
<td>M.12</td>
<td>Description of the control byte</td>
<td>131</td>
</tr>
<tr>
<td>M.13</td>
<td>Use of paging call repetition flag</td>
<td>132</td>
</tr>
<tr>
<td>M.14</td>
<td>Paging segment address codes for alphanumeric message</td>
<td>133</td>
</tr>
<tr>
<td>M.15</td>
<td>Paging segment address codes for variable length numeric message</td>
<td>134</td>
</tr>
<tr>
<td>M.16</td>
<td>Paging segment address codes for national paging with variable-length functions message</td>
<td>135</td>
</tr>
<tr>
<td>M.17</td>
<td>Address notification (50 bit)</td>
<td>138</td>
</tr>
<tr>
<td>M.18</td>
<td>Address notification (25 bit)</td>
<td>139</td>
</tr>
<tr>
<td>M.19</td>
<td>Z3 parity relationship</td>
<td>139</td>
</tr>
<tr>
<td>P.1.1</td>
<td>RT+ information elements</td>
<td>148</td>
</tr>
<tr>
<td>P.2.1</td>
<td>Code list and ‘RT+ class’ description of ‘RT/eRT content types (1 of 3)</td>
<td>157</td>
</tr>
<tr>
<td>Q.1.1</td>
<td>eRT information elements</td>
<td>161</td>
</tr>
</tbody>
</table>
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62106 has been prepared by technical area 1: Terminals for audio, video and data services and contents, of IEC technical committee 100: Audio, video and multimedia systems and equipment.

This third edition cancels and replaces the second edition, published in 2009 and constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- for the RDS feature EON and the use of group types 14A and 14B some additional explanations were added;
- in Annex E, containing the character code tables to be used in RDS, the explanation for Table E.1 and Table E.2 was extended;
- several small typing errors were corrected;
- to Enhanced RadioText in Annex Q an additional explanation was added.
The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>CDV</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>100/2122A/CDV</td>
<td>100/2148/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.1

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

1 For technical reasons equations and some figures had to be left unchanged and are not in accordance with the ISO/IEC Directives, Part 2:2011.
IEC 62106:2000 (first edition) and IEC 62106:2009 (second edition) have the same main text and annex structure. However, the main text of this edition is slightly restructured to more closely conform to ISO/IEC Directives, Part 2:2011. Nevertheless, cross-referencing between this edition and the previous editions remains possible. To find the corresponding subclause quickly between this edition and the first edition, it is basically sufficient to subtract 3 clauses. Example: see 3.1.5.1 in the first edition, published in 2000 becomes, see 6.1.5.1.
1 Scope

This International Standard describes the Radio Data System, RDS, intended for application to VHF/FM sound broadcasts in the range 87.5 MHz to 108.0 MHz which may carry either stereophonic (pilot-tone system) or monophonic programmes (as stated in ITU-R Recommendation BS 450-3 and ITU-R Recommendation BS.643-3). The main objectives of RDS are to enable improved functionality for FM receivers and to make them more user-friendly by using features such as Programme Identification, Programme Service name display and, where applicable, automatic tuning for portable and car radios, in particular. The relevant basic tuning and switching information therefore has to be implemented by the type 0 group (see 6.1.5.1), and it is not optional unlike many of the other possible features in RDS.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 14819 (all parts), Intelligent transport systems – Traffic and travel information messages via traffic message coding

ITU-R Recommendation BS.450-3, Transmission standards for FM sound broadcasting at VHF

ITU-R Recommendation BS.643-3, Radio data system for automatic tuning and other applications in FM radio receivers for use with pilot-tone system

US NRSC-4-B, National Radio Systems Committee – NRSC-4-A: United States RBDS standard

ETSI EN 301 700, Digital Audio Broadcasting (DAB); VHF/FM broadcasting: cross referencing to simulcast DAB services by RDS-ODA 147

3 Abbreviations

For the purposes of this document, the following abbreviations apply.

3.1

AM

<broadcasting> amplitude modulation