corrigendum November 2013

# Low-voltage switchgear and controlgear —

**Part 2: Circuit-breakers** 

ICS 29.130.20



NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

This British Standard is the UK implementation of EN 60947-2:2006+A2:2013. It is identical to IEC 60947-2:2006, incorporating amendments 1:2009 and 2:2013. It supersedes BS EN 60947-2:2006+A1:2009 which will be withdrawn on 7 March 2016.

The start and finish of text introduced or altered by amendment is indicated in the text by tags. Tags indicating changes to IEC text carry the number of the IEC amendment. For example, text altered by IEC amendment 1 is indicated by  $\boxed{\text{A}}$ .

The UK participation in its preparation was entrusted by Technical Committee PEL/17, Switchgear, controlgear, and HV-LV co-ordination, to Subcommittee PEL/17/2, Low voltage switchgear and controlgear.

A list of organizations represented on this subcommittee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard cannot confer immunity from legal obligations.

| This British Standard was     |
|-------------------------------|
| published under the authority |
| of the Standards Policy and   |
| Strategy Committee            |
| on 29 September 2006          |

© The British Standards Institution 2013. Published by BSI Standards Limited 2013

#### Amendments/corrigenda issued since publication

| Date                | Comments                                                                                     |
|---------------------|----------------------------------------------------------------------------------------------|
| 31 December<br>2009 | Implementation of IEC amendment 1:2009 with<br>CENELEC endorsement A1:2009                   |
| 31 July 2013        | Implementation of IEC amendment 2:2013 with<br>CENELEC endorsement A2:2013. Annex ZZ updated |
| 30 November<br>2013 | Correction to text introduced by amendment 2:2013<br>in subclauses 5.2 b), 5.2 c) and A.5.1  |
|                     |                                                                                              |

# EUROPÄISCHE NORM

May 2013

ICS 29.130.20

English version

# Low-voltage switchgear and controlgear Part 2: Circuit-breakers (IEC 60947-2:2006)

Appareillage à basse tension Partie 2: Disjoncteurs (CEI 60947-2:2006) Niederspannungsschaltgeräte Teil 2: Leistungsschalter (IEC 60947-2:2006)

This European Standard was approved by CENELEC on 2006-07-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

# CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

© 2006 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

#### Foreword

The text of document 17B/1455/FDIS, future edition 4 of IEC 60947-2, prepared by SC 17B, Low-voltage switchgear and controlgear, of IEC TC 17, Switchgear and controlgear, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as EN 60947-2 on 2006-07-01.

This European Standard supersedes EN 60947-2:2003.

The main changes introduced in EN 60947-2:2006 are an amendment to the verification of dielectric properties, the improvement of EMC clauses in Annexes B, F, J and M, and the addition of a new Annex O regarding instantaneous trip circuit-breakers.

The following dates were fixed:

| - | latest date by which the EN has to be implemented<br>at national level by publication of an identical | <b>/ I</b> \ | 0007 04 04 |
|---|-------------------------------------------------------------------------------------------------------|--------------|------------|
|   | national standard or by endorsement                                                                   | (dop)        | 2007-04-01 |
| - | latest date by which the national standards conflicting with the EN have to be withdrawn              | (dow)        | 2009-07-01 |

This European Standard has been prepared under a mandate given to CENELEC by the European Commission and the European Free Trade Association and covers essential requirements of EC Directive EMC (89/336/CEE). See Annex ZZ.

Annexes ZA and ZZ have been added by CENELEC.

#### Endorsement notice

The text of the International Standard IEC 60947-2:2006 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

| IEC 60112     | NOTE | Harmonized as EN 60112:2003 (not modified).                               |
|---------------|------|---------------------------------------------------------------------------|
| IEC 60269-1   | NOTE | Harmonized as EN 60269-1:1998 (not modified), new edition at draft stage. |
| IEC 60269-2-1 | NOTE | Harmonized as HD 60269-2-1:2005 (not modified).                           |
| IEC 60269-3   | NOTE | Harmonized as EN 60269-3:1995 (not modified), new edition at draft stage. |
| IEC 60439     | NOTE | Harmonized as EN 60439 (Series) (not modified).                           |
| IEC 60947-3   | NOTE | Harmonized as EN 60947-3:1999 (not modified).                             |
| IEC 60947-5-1 | NOTE | Harmonized as EN 60947-5-1:2004 (not modified).                           |
|               |      |                                                                           |

#### Foreword to amendment A1

The text of document 17B/1636/FDIS, future amendment 1 to IEC 60947-2:2006, prepared by SC 17B, Low-voltage switchgear and controlgear, of IEC TC 17, Switchgear and controlgear, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as amendment A1 to EN 60947-2:2006 on 2009-07-01.

The following dates were fixed:

| <ul> <li>latest date by which the amendment has to be<br/>implemented at national level by publication of<br/>an identical national standard or by endorsement</li> </ul> | (dop) | 2010-04-01 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|
| <ul> <li>latest date by which the national standards conflicting<br/>with the amendment have to be withdrawn</li> </ul>                                                   | (dow) | 2012-07-01 |
| Annex ZA has been added by CENELEC.                                                                                                                                       |       |            |

#### **Endorsement notice**

The text of amendment 1:2009 to the International Standard IEC 60947-2:2006 was approved by CENELEC as an amendment to the European Standard without any modification.

## Foreword to amendment A2

The text of document 17B/1796/FDIS, future edition 1 of IEC 60947-2:2006/A2, prepared by SC 17B, "Low-voltage switchgear and controlgear", of IEC TC 17, "Switchgear and controlgear" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 60947-2:2006/A2:2013.

The following dates are fixed:

| • | latest date by which the document has<br>to be implemented at national level by<br>publication of an identical national<br>standard or by endorsement | (dop) | 2013-12-07 |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|
| • | latest date by which the national<br>standards conflicting with the<br>document have to be withdrawn                                                  | (dow) | 2016-03-07 |

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CENELEC by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive(s).

For the relationship with EU Directive see informative Annex ZZ, which is an integral part of this document.

This standard covers the Principle Elements of the Safety Objectives for Electrical Equipment Designed for Use within Certain Voltage Limits (LVD - 2006/95/EC).

#### Endorsement notice

The text of the International Standard IEC 60947-2:2006/A2:2013 was approved by CENELEC as a European Standard without any modification.

#### BS EN 60947-2:2006+A2:2013

#### IEC 20047 0.0002 1 0.0010 (E)

This is a preview of "BS EN 60947-2:2006+A...". Click here to purchase the full version from the ANSI store.

#### CONTENTS

| 1 | Gene  | eral                                                     | . 9 |
|---|-------|----------------------------------------------------------|-----|
|   | 1.1   | Scope and object                                         | . 9 |
|   | 1.2   | Normative references                                     | . 9 |
| 2 | Defir | nitions                                                  | 12  |
| 3 | Clas  | sification                                               | 15  |
| 4 | Char  | racteristics of circuit-breakers                         | 16  |
|   | 4.1   | Summary of characteristics                               | 16  |
|   | 4.2   | Type of circuit-breaker                                  | 17  |
|   | 4.3   | Rated and limiting values of the main circuit            | 17  |
|   | 4.4   | Utilization categories                                   | 21  |
|   | 4.5   | Control circuits                                         | 21  |
|   | 4.6   | Auxiliary circuits                                       | 22  |
|   | 4.7   | Releases                                                 | 22  |
|   | 4.8   | Integral fuses (integrally fused circuit-breakers)       |     |
| 5 | Prod  | luct information                                         | 23  |
|   | 5.1   | Nature of the information                                | 23  |
|   | 5.2   | Marking                                                  | 24  |
|   | 5.3   | Instructions for installation, operation and maintenance | 25  |
| 6 | Norn  | nal service, mounting and transport conditions           | 25  |
| 7 | Cons  | structional and performance requirements                 | 25  |
|   | 7.1   | Constructional requirements                              | 25  |
|   | 7.2   | Performance requirements                                 | 27  |
|   | 7.3   | Electromagnetic compatibility (EMC)                      | 33  |
| 8 | Test  | S                                                        | 33  |
|   | 8.1   | Kind of tests                                            | 33  |
|   | 8.2   | Compliance with constructional requirements              | 34  |
|   | 8.3   | Type tests                                               | 34  |
|   | 8.4   | Routine tests                                            | 64  |
|   | 8.5   | Special – Damp heat, salt mist, vibration and shock      | 68  |

| Annex J (normative) Electromagnetic compatibility (EMC) – Requirements and test methods for circuit-breakers                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Annex K (informative) Glossary of symbols related to products covered by this standard                                                                                                               |
| Annex L (normative) Circuit-breakers not fulfilling the requirements for overcurrent protection                                                                                                      |
| Annex M (normative) Modular residual current devices (without integral current breaking device)                                                                                                      |
| Annex N (normative) Electromagnetic compatibility (EMC) – Additional requirements and test methods for devices not covered by Annexes B, F and M 222                                                 |
| Annex O Instantaneous trip circuit-breakers (ICB) 226                                                                                                                                                |
| Annex ZA (normative) Normative references to international publications with their corresponding European publications                                                                               |
| Annex ZZ (informative) Coverage of Essential Requirements of EU Directives233                                                                                                                        |
| Bibliography                                                                                                                                                                                         |
| Figure 1 – Test arrangement (connecting cables not shown) for short-circuit tests                                                                                                                    |
| Figure A.1 – Over-current co-ordination between a circuit-breaker and a fuse or back-<br>up protection by a fuse: operating characteristics                                                          |
| Figure A.2 Figure A.3                                                                                                                                                                                |
| Total A selectivity A between two circuit-breakers                                                                                                                                                   |
| Figure A.4 Figure A.5                                                                                                                                                                                |
| Back-up protection by a circuit-breaker – Operating characteristics                                                                                                                                  |
| Figure A.6 – Example of test circuit for conditional short-circuit breaking capacity tests showing cable connections for a 3-pole circuit-breaker $(C_1)$                                            |
| Figure B.1 – Test circuit for the verification of the operating characteristic (see B.8.2)103                                                                                                        |
| Figure B.2 – Test circuit for the verification of the limiting value of the non-operating current under over-current conditions (see B.8.5)104                                                       |
| Figure B.3 – Test circuit for the verification of the behaviour of CBRs classified under B.3.1.2.2 (see B.8.9)                                                                                       |
| Figure B.4 – Current ring wave 0,5 μs/100 kHz 106                                                                                                                                                    |
| Figure B.5 – Example of test circuit for the verification of resistance to unwanted tripping                                                                                                         |
| Figure B.6 – Surge current wave 8/20 μs                                                                                                                                                              |
| Figure B.7 – Test circuit for the verification of resistance to unwanted tripping in case of flashover without follow-on current (B.8.6.2)                                                           |
| Figure B.8 – Test circuit for the verification of the correct operation of CBRs, in the case of residual pulsating direct currents (see B.8.7.2.1, B.8.7.2.2 and B.8.7.2.3) 109                      |
| Figure B.9 – Test circuit for the verification of the correct operation of CBRs, in the case of a residual pulsating direct current superimposed by a smooth direct residual current (see B.8.7.2.4) |
| Figure F.1 – Representation of test current produced by back-to-back thyristors in accordance with F.4.1                                                                                             |
|                                                                                                                                                                                                      |

# BS EN 60947-2:2006+A2:2013

# This is a preview of "BS EN 60947-2:2006+A...". Click here to purchase the full version from the ANSI store. Figure F.4 – Test circuit for immunity and emission tests in accordance with F.4.1.3, F.4.2, F.4.3, F.4.6, F.4.7.1, F.5.4 and F.6.2 – Three-phase connection ...... 126 Figure F.5 – Test current for the verification of the influence of the current dips and Figure F.6 – Circuit for electrical fast transients/bursts (EFT/B) immunity test in accordance with F.4.4 – Two phase poles in series ...... 128 Figure F.7 – Circuit for electrical fast transients/bursts (EFT/B) immunity test in Figure F.8 – Circuit for electrical fast transients/bursts (EFT/B) immunity test in Figure F.9 – Test circuit for the verification of the influence of surges in the main Figure F.10 – Test circuit for the verification of the influence of surges in the main Figure F.11 – Test circuit for the verification of the influence of surges in the main Figure F.12 – Test circuit for the verification of the influence of current surges in the Figure F.13 – Test circuit for the verification of the influence of current surges in the Figure F.14 – Test circuit for the verification of the influence of current surges in the Figure F.15 – Temperature variation cycles at a specified rate of change in Figure F.17 – Test set up for the verification of immunity to radiated r.f. Figure F.18 – Test set up for the verification of immunity to electrical fast Figure F.19 – Test set up for verification of immunity to electrical fast Figure F.20 – General test set-up for the verification of immunity to conducted disturbances induced by r.f. fields (common mode) ...... 140 Figure F.21 – Arrangement of connections for the verification of immunity to conducted disturbances induced by r.f. fields - Two phase poles in series configuration ... 141 Figure F.22 – Arrangement of connections for the verification of immunity to conducted disturbances induced by r.f. fields - Three phase poles in series Figure F.23 – Arrangement of connections for the verification of immunity to Figure G.2 – Example of power loss measurement according to G.2.2 and G.2.3..... 146

| Figure J. 4 – Test set up for the verification of immunity to radiated r.f. electromagnetic       160         Figure J. 5 – Test set up for the verification of immunity to electrical fast       161         Figure J. 6 – Test set up for the verification of immunity to electrical fast       162         Figure J. 6 – Test set up for the verification of immunity to electrical fast       162         Figure K. 1 – Relationship between symbols and tripping characteristics       166         Figure K. 2 – Template for characteristics of cut-off current versus prospective current from 1 kA to 200 kA       167         Figure K. 4 – Template for characteristics of let-through energy versus prospective current from 0.01 kA to 200 kA       168         Figure K. 6 – Template for characteristics of let-through energy versus prospective current from 0.01 kA to 200 kA       169         Figure K. 7 – Template for characteristics of let-through energy versus prospective current from 0.01 kA to 200 kA       169         Figure K. 7 – Example of the use of template K. 2       170         Figure M. 1 – Test circuits for the verification of operation in the case of a sudden appearance or residual current (without breaking device)       202         Figure M. 2 – Test circuits for the verification of the resistance to unwanted tripping in the case of loading of the network capacitance       203         Figure M. 5 – Test set up for the verification of operation in the case of a sudden appearance of residual pulsating direct current (without breaking device)       204                                                                                                                                                             |                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| transients/bursts (EFT/B) on power lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                            |
| transients/bursts (EFT/B) on signal lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |
| Figure K.2 – Template for characteristics of cut-off current versus prospective current from 1 kA to 200 kA       166         Figure K.3 – Template for characteristics of cut-off current versus prospective current from 0,01 kA to 200 kA       167         Figure K.4 – Template for characteristics of let-through energy versus prospective current from 0,01 kA to 200 kA       168         Figure K.5 – Template for characteristics of let-through energy versus prospective current from 0,01 kA to 200 kA       168         Figure K.6 – Example of the use of template K.2       170         Figure K.7 – Example of the use of template K.4       171         Figure M.1 – Test circuits for the verification of operation in the case of a studen appearance of residual current (with breaking device)       202         Figure M.4 – Test circuits for the verification of the limiting value of non-operating current under overcurrent conditions.       204         Figure M.5 – Test circuits for the verification of the resistance to unwanted tripping in the case of loading of the network capacitance       205         Figure M.5 – Test circuits for the verification of operation in the case of a sudden appearance of residual pulsating direct current (without breaking device)       204         Figure M.5 – Test circuits for the verification of operation in the case of a sudden appearance of residual current (without breaking device)       204         Figure M.5 – Test circuits for the verification of operation in the case of a continuous rise of a residual pulsating direct current (without breaking device)       206                                                                                                                |                                                                                            |
| 1 KA to 200 KA       166         Figure K.3 – Template for characteristics of cut-off current versus prospective current from 0.01 kA to 200 kA       167         Figure K.4 – Template for characteristics of let-through energy versus prospective current from 0.01 kA to 200 kA       168         Figure K.5 – Template for characteristics of let-through energy versus prospective current from 0.01 kA to 200 kA       169         Figure K.6 – Example of the use of template K.2       170         Figure M.1 – Test circuits for the verification of operation in the case of a steady increase of residual current (with breaking device)       201         Figure M.3 – Test circuits for the verification of operation in the case of a sudden appearance of residual current (without breaking device)       203         Figure M.4 – Test circuits for the verification of the limiting value of non-operating current under overcurrent conditions       204         Figure M.5 – Test circuits for the verification of the resistance to unwanted tripping in the case of floading of the network capacitance       205         Figure M.6 – Test circuits for the verification of operation in the case of a sudden appearance of residual pulsating direct current.       206         Figure M.7 – Test circuits for the verification of operation in the case of a sudden appearance of residual pulsating direct current.       205         Figure M.6 – Test circuits for the verification of operation in the case of a sudden appearance of residual pulsating direct current.       206         Figure M.7 – Test circuits for the                                                                                                                                | Figure K.1 – Relationship between symbols and tripping characteristics 165                 |
| 0,01 kA to 200 kA       167         Figure K.4 - Template for characteristics of let-through energy versus prospective current from 1 kA to 200 kA       168         Figure K.5 - Template for characteristics of let-through energy versus prospective current from 0,01 kA to 200 kA       169         Figure K.6 - Example of the use of template K.2       170         Figure K.7 - Example of the use of template K.4       171         Figure M.1 - Test circuits for the verification of operation in the case of a studden appearance of residual current (with breaking device)       201         Figure M.2 - Test circuits for the verification of operation in the case of a studden appearance of residual current (without breaking device)       202         Figure M.4 - Test circuits for the verification of the limiting value of non-operating current under overcurrent conditions.       204         Figure M.4 - Test circuits for the verification of the resistance to unwanted tripping in the case of lashover without follow-on current.       205         Figure M.5 - Test circuits for the verification of operation in the case of a sudden appearance of residual pulsating direct current.       203         Figure M.6 - Test circuits for the verification of operation in the case of a sudden appearance of residual pulsating direct current.       205         Figure M.7 - Test circuits for the verification of operation in the case of a sudden appearance of residual pulsating direct current (without breaking device)       208         Figure M.8 - Test circuits for the verification of operation in the                                                                                                                                |                                                                                            |
| from 1 kA to 200 kÅ       168         Figure K.5 – Template for characteristics of let-through energy versus prospective current from 0,01 kA to 200 kA       169         Figure K.6 – Example of the use of template K.2       170         Figure K.7 – Example of the use of template K.4       171         Figure M.1 – Test circuits for the verification of operation in the case of a steady increase of residual current (with breaking device)       201         Figure M.2 – Test circuits for the verification of operation in the case of a sudden appearance of residual current (without breaking device)       203         Figure M.4 – Test circuits for the verification of the limiting value of non-operating current under overcurrent conditions       204         Figure M.5 – Test circuits for the verification of the resistance to unwanted tripping in the case of loading of the network capacitance       205         Figure M.6 – Test circuits for the verification of operation in the case of a sudden appearance of residual pulsating direct current       206         Figure M.7 – Test circuits for the verification of the resistance to unwanted tripping in the case of loading of the network capacitance       205         Figure M.8 – Test circuits for the verification of operation in the case of a sudden appearance of residual pulsating direct current (without breaking device)       208         Figure M.8 – Test circuits for the verification of operation in the case of a sudden appearance of residual pulsating direct current (without breaking device)       208         Figure M.10 – Test ci                                                                                                                                |                                                                                            |
| from 0,01 kA to 200 kA169Figure K.6 - Example of the use of template K.2170Figure K.7 - Example of the use of template K.4171Figure M.1 - Test circuits for the verification of operation in the case of a steady<br>increase of residual current (with breaking device)201Figure M.2 - Test circuits for the verification of operation in the case of a sudden<br>appearance of residual current (with breaking device)202Figure M.3 - Test circuits for the verification of operation in the case of a sudden<br>appearance of residual current (without breaking device)203Figure M.4 - Test circuits for the verification of the limiting value of non-operating<br>current under overcurrent conditions204Figure M.5 - Test circuits for the verification of the resistance to unwanted tripping in<br>the case of loading of the network capacitance205Figure M.6 - Test circuits for the verification of operation in the case of a continuous<br>rise of a residual pulsating direct current.207Figure M.8 - Test circuits for the verification of operation in the case of a sudden<br>appearance of residual pulsating direct current (without breaking device)208Figure M.9 - Test circuits for the verification of operation in the case of a sudden<br>appearance of residual pulsating direct current (without breaking device)208Figure M.10 - Test circuits for the verification of operation in the case of a sudden<br>appearance of residual pulsating direct current (without breaking device)208Figure M.10 - Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (without breaking device)209Figure M.11 - Test circuits for the verificati                                                      | from 1 kA to 200 kA                                                                        |
| Figure K.7 - Example of the use of template K.4171Figure M.1 - Test circuits for the verification of operation in the case of a steady<br>increase of residual current201Figure M.2 - Test circuits for the verification of operation in the case of a sudden<br>appearance of residual current (with breaking device)202Figure M.3 - Test circuits for the verification of operation in the case of a sudden<br>appearance of residual current (without breaking device)203Figure M.4 - Test circuits for the verification of the limiting value of non-operating<br>current under overcurrent conditions204Figure M.5 - Test circuits for the verification of the resistance to unwanted tripping in<br>the case of loading of the network capacitance205Figure M.6 - Test circuits for the verification of operation in the case of a continuous<br>rise of a residual pulsating direct current206Figure M.8 - Test circuits for the verification of operation in the case of a sudden<br>appearance of residual pulsating direct current (without breaking device)208Figure M.8 - Test circuits for the verification of operation in the case of a sudden<br>appearance of residual pulsating direct current (without breaking device)208Figure M.9 - Test circuits for the verification of operation in the case of a sudden<br>appearance of residual pulsating direct current (with breaking device)209Figure M.10 - Test circuits for the verification of operation in the case of a slowly<br>rising residual smooth direct current (without breaking device)211Figure M.11 - Test circuits for the verification of operation in the case of a slowlen<br>appearance of residual smooth direct current (without breaking device)212Figure M.11 - Test                             |                                                                                            |
| Figure M.1 – Test circuits for the verification of operation in the case of a steady       201         Figure M.2 – Test circuits for the verification of operation in the case of a sudden       202         Figure M.3 – Test circuits for the verification of operation in the case of a sudden       202         Figure M.3 – Test circuits for the verification of operation in the case of a sudden       203         Figure M.4 – Test circuits for the verification of the limiting value of non-operating       203         Figure M.5 – Test circuits for the verification of the resistance to unwanted tripping in       204         Figure M.5 – Test circuits for the verification of the resistance to unwanted tripping in       205         Figure M.6 – Test circuits for the verification of operation in the case of a continuous       206         Figure M.7 – Test circuits for the verification of operation in the case of a continuous       206         Figure M.8 – Test circuits for the verification of operation in the case of a sudden       207         Figure M.8 – Test circuits for the verification of operation in the case of a sudden       208         Figure M.8 – Test circuits for the verification of operation in the case of a sudden       208         Figure M.9 – Test circuits for the verification of operation in the case of a sudden       209         Figure M.10 – Test circuits for the verification of operation in the case of a sudden       210         pulsating direct current (with breaking device) <td< td=""><td>Figure K.6 – Example of the use of template K.2 170</td></td<>                                                                                                                                       | Figure K.6 – Example of the use of template K.2 170                                        |
| increase of residual current201Figure M.2 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual current (with breaking device)202Figure M.3 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual current (without breaking device)203Figure M.4 – Test circuits for the verification of the limiting value of non-operating<br>current under overcurrent conditions204Figure M.5 – Test circuits for the verification of the resistance to unwanted tripping in<br>the case of loading of the network capacitance205Figure M.6 – Test circuits for the verification of the resistance to unwanted tripping in<br>the case of flashover without follow-on current206Figure M.7 – Test circuits for the verification of operation in the case of a continuous<br>rise of a residual pulsating direct current207Figure M.8 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual pulsating direct current (without breaking device)208Figure M.9 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual pulsating direct current (without breaking device)208Figure M.10 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (without breaking device)209Figure M.11 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (with breaking device)211Figure M.12 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (without breaking device)212Figure M.1                            | Figure K.7 – Example of the use of template K.4 171                                        |
| appearance of residual current (with breaking device)202Figure M.3 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual current (without breaking device)203Figure M.4 – Test circuits for the verification of the limiting value of non-operating<br>current under overcurrent conditions204Figure M.5 – Test circuits for the verification of the resistance to unwanted tripping in<br>the case of loading of the network capacitance205Figure M.6 – Test circuits for the verification of operation in the case of a continuous<br>rise of a residual pulsating direct current206Figure M.7 – Test circuits for the verification of operation in the case of a continuous<br>rise of a residual pulsating direct current (without breaking device)208Figure M.8 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual pulsating direct current (without breaking device)209Figure M.9 – Test circuits for the verification of operation in the case of a residual<br>pulsating direct current (with breaking device)209Figure M.10 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual pulsating direct current (with breaking device)211Figure M.11 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (without breaking device)212Figure M.12 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (without breaking device)212Figure M.12 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (without breaking devi |                                                                                            |
| appearance of residual current (without breaking device)203Figure M.4 – Test circuits for the verification of the limiting value of non-operating<br>current under overcurrent conditions204Figure M.5 – Test circuits for the verification of the resistance to unwanted tripping in<br>the case of loading of the network capacitance205Figure M.6 – Test circuit for the verification of the resistance to unwanted tripping in<br>the case of flashover without follow-on current206Figure M.7 – Test circuits for the verification of operation in the case of a continuous<br>rise of a residual pulsating direct current207Figure M.8 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual pulsating direct current (without breaking device)208Figure M.9 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual pulsating direct current (with breaking device)209Figure M.10 – Test circuits for the verification of operation in the case of a residual<br>pulsating direct current superimposed by smooth direct current of 6 mA210Figure M.11 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (without breaking device)212Figure M.12 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (without breaking device)212Figure M.12 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (without breaking device)212Figure M.13 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (wi |                                                                                            |
| current under overcurrent conditions204Figure M.5 – Test circuits for the verification of the resistance to unwanted tripping in<br>the case of loading of the network capacitance205Figure M.6 – Test circuit for the verification of the resistance to unwanted tripping in<br>the case of flashover without follow-on current206Figure M.7 – Test circuits for the verification of operation in the case of a continuous<br>rise of a residual pulsating direct current207Figure M.8 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual pulsating direct current (without breaking device)208Figure M.9 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual pulsating direct current (with breaking device)209Figure M.10 – Test circuits for the verification of operation in the case of a residual<br>pulsating direct current superimposed by smooth direct current of 6 mA210Figure M.11 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (without breaking device)211Figure M.12 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (without breaking device)212Figure M.13 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (with breaking device)213Figure M.14 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (with breaking device)213Figure M.14 – Test circuits for the verification of operation in the case of a slowly<br>rising residual current resulting from a  |                                                                                            |
| the case of loading of the network capacitance205Figure M.6 – Test circuit for the verification of the resistance to unwanted tripping in<br>the case of flashover without follow-on current206Figure M.7 – Test circuits for the verification of operation in the case of a continuous<br>rise of a residual pulsating direct current207Figure M.8 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual pulsating direct current (without breaking device)208Figure M.9 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual pulsating direct current (with breaking device)209Figure M.10 – Test circuits for the verification of operation in the case of a residual<br>pulsating direct current superimposed by smooth direct current of 6 mA210Figure M.11 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (without breaking device)211Figure M.12 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (without breaking device)212Figure M.13 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (without breaking device)213Figure M.14 – Test circuits for the verification of operation in the case of a slowly<br>rising residual current resulting from a fault in a circuit fed by a three-pulse star or a<br>six-pulse bridge connection214                                                                                                                                                                                                              |                                                                                            |
| the case of flashover without follow-on current206Figure M.7 – Test circuits for the verification of operation in the case of a continuous207Figure M.8 – Test circuits for the verification of operation in the case of a sudden208appearance of residual pulsating direct current (without breaking device)208Figure M.9 – Test circuits for the verification of operation in the case of a sudden209appearance of residual pulsating direct current (with breaking device)209Figure M.10 – Test circuits for the verification of operation in the case of a residual210pulsating direct current superimposed by smooth direct current of 6 mA210Figure M.11 – Test circuits for the verification of operation in the case of a slowly211Figure M.12 – Test circuits for the verification of operation in the case of a sudden212appearance of residual smooth direct current (without breaking device)212Figure M.13 – Test circuits for the verification of operation in the case of a sudden212appearance of residual smooth direct current (without breaking device)213Figure M.13 – Test circuits for the verification of operation in the case of a sudden213Figure M.14 – Test circuits for the verification of operation in the case of a slowly213Figure M.14 – Test circuits for the verification of operation in the case of a slowly214Figure M.15 – Test circuits for the verification of operation in the case of a slowly214Figure M.15 – Test circuits for the verification of operation in the case of a slowly214Figure M.15 – Test circuits for the verification of operation in th                                                                                                                                                                                   |                                                                                            |
| rise of a residual pulsating direct current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |
| appearance of residual pulsating direct current (without breaking device)208Figure M.9 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual pulsating direct current (with breaking device)209Figure M.10 – Test circuits for the verification of operation in the case of a residual<br>pulsating direct current superimposed by smooth direct current of 6 mA210Figure M.11 – Test circuits for the verification of operation in the case of a slowly<br>rising residual smooth direct current211Figure M.12 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (without breaking device)212Figure M.13 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (without breaking device)213Figure M.13 – Test circuits for the verification of operation in the case of a slowly<br>rising residual smooth direct current (with breaking device)213Figure M.14 – Test circuits for the verification of operation in the case of a slowly<br>rising residual current resulting from a fault in a circuit fed by a three-pulse star or a<br>six-pulse bridge connection214Figure M.15 – Test circuits for the verification of operation in the case of a slowly<br>rising residual current resulting from a fault in a circuit fed by a two-pulse bridge214                                                                                                                                                                                                                                                                                                                                       |                                                                                            |
| appearance of residual pulsating direct current (with breaking device)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            |
| pulsating direct current superimposed by smooth direct current of 6 mA210Figure M.11 – Test circuits for the verification of operation in the case of a slowly<br>rising residual smooth direct current211Figure M.12 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (without breaking device)212Figure M.13 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (with breaking device)213Figure M.13 – Test circuits for the verification of operation in the case of a sudden<br>appearance of residual smooth direct current (with breaking device)213Figure M.14 – Test circuits for the verification of operation in the case of a slowly<br>rising residual current resulting from a fault in a circuit fed by a three-pulse star or a<br>six-pulse bridge connection214Figure M.15 – Test circuits for the verification of operation in the case of a slowly<br>rising residual current resulting from a fault in a circuit fed by a two-pulse bridge214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                          |
| rising residual smooth direct current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                            |
| appearance of residual smooth direct current (without breaking device)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            |
| <ul> <li>appearance of residual smooth direct current (with breaking device)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            |
| rising residual current resulting from a fault in a circuit fed by a three-pulse star or a six-pulse bridge connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            |
| rising residual current resulting from a fault in a circuit fed by a two-pulse bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rising residual current resulting from a fault in a circuit fed by a three-pulse star or a |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rising residual current resulting from a fault in a circuit fed by a two-pulse bridge      |

# BS EN 60947-2:2006+A2:2013

# This is a preview of "BS EN 60947-2:2006+A...". Click here to purchase the full version from the ANSI store.

|                | Figure M.16 – Test circuit for the verification of the behaviour of MRCDs with separate sensing means in the case of a failure of the sensor means connection                                  | . 216 |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                | Figure M.17 – Test circuit for the verification of the behaviour of MRCD with separate sensing means under short-circuit conditions                                                            | . 217 |
|                | Figure M.18 – Test circuit for the verification of the behaviour of MRCD with integral sensing means under short-circuit conditions                                                            | . 218 |
|                | Figure M.19 – Test circuit for the verification of the behaviour of terminal type MRCD under short-circuit conditions                                                                          | . 219 |
|                | Figure M.20 – Verification of immunity to radiated r.f. electromagnetic fields - Test set-up for MRCD with separate sensing means (additional to the test of Annex B)                          | . 220 |
|                | Figure M.21 – Verification of immunity to electrical fast transients/bursts (EFT/B) on the sensing means connection of an MRCD with separate sensing means (additional to the test of Annex B) | . 221 |
|                | Figure M.22 – Verification of immunity to conducted disturbances induced by r.f. fields - Test set up for MRCD with separate sensing means (additional to the test of Annex B)                 | . 221 |
| A <sub>2</sub> | P Table 1 (void) 🕢                                                                                                                                                                             | 4     |
|                | Table 2 – Ratio <i>n</i> between short-circuit making capacity and short-circuit breaking capacity and related power factor (for a.c. circuit-breakers)                                        |       |
|                | Table 3 – Minimum values of rated short-time withstand current                                                                                                                                 |       |
|                | Table 4 – Utilization categories                                                                                                                                                               | 21    |
|                | Table 5 – Preferred values of the rated control supply voltage, if different from that of the main circuit                                                                                     | 21    |
|                | Table 6 – Characteristics of the opening operation of inverse time-delay over-current opening releases at the reference temperature                                                            | 29    |
|                | Table 7 – Temperature-rise limits for terminals and accessible parts                                                                                                                           |       |
|                | Table 8 – Number of operating cycles                                                                                                                                                           |       |
|                | Table 9 – Overall schema of test sequences a<br>Table 9a – Applicability of test sequences according to the relationship between $I_{CS}$ ,                                                    | 36    |
|                | $I_{\rm CU}$ and $I_{\rm CW}$                                                                                                                                                                  | 37    |
|                | Table 9b – Applicability of tests or test sequences to four-pole circuit-breakers in a given frame size and design when tested according to the alternative programme 1 of 8.3.1.4             | 38    |
|                | Table 9c – Applicability of tests or test sequences to 3-pole circuit-breakers in a given frame size and design when tested according to the alternative programme 2 of 8.3.1.4                | 40    |
|                | Table 10 – Number of samples for test                                                                                                                                                          | 43    |
|                | Table 11 – Values of power factors and time constants corresponding to test currents                                                                                                           |       |
|                | Table 12 – Test circuit characteristics for overload performance                                                                                                                               |       |
|                | Table B.1 – Operating characteristic for non-time-delay type                                                                                                                                   | 84    |
|                | Table B.2 – Operating characteristic for time-delay-type having a limiting non-<br>actuating time of 0,06 s                                                                                    | 85    |
|                | Table B.3 – Requirements for CBRs functionally dependent on line voltage                                                                                                                       |       |
|                | Table B.4 – Additional test sequences                                                                                                                                                          | 92    |
|                | Table B.5 – Tripping current range for CBRs in case of an earth fault comprising a d.c. component                                                                                              | 97    |
|                | Table F.1 – Test parameters for current dips and interruptions                                                                                                                                 |       |
|                | Table J.1 – EMC – Immunity tests                                                                                                                                                               |       |
|                | Table J.2 – Reference data for immunity test specifications                                                                                                                                    |       |
|                | Table J.3 – EMC – Emission tests                                                                                                                                                               |       |
|                | Table J.4 – Reference data for emission test specifications                                                                                                                                    |       |
|                | Table M.1 – Product information                                                                                                                                                                | . 183 |
|                | Table M.2 – Requirements for MRCDs with voltage source                                                                                                                                         |       |
|                | Table M.3 – Test sequences                                                                                                                                                                     | . 187 |

## LOW-VOLTAGE SWITCHGEAR AND CONTROLGEAR -

## Part 2: Circuit-breakers

#### 1 General

The provisions of the general rules dealt with in IEC 60947-1 are applicable to this standard, where specifically called for. Clauses and subclauses, tables, figures and annexes of the general rules thus applicable are identified by reference to IEC 60947-1, for example, 1.2.3 of IEC 60947-1, Table 4 of IEC 60947-1, or Annex A of IEC 60947-1.

#### 1.1 Scope and object

This standard applies to circuit-breakers, the main contacts of which are intended to be connected to circuits, the rated voltage of which does not exceed 1 000 V a.c. or 1 500 V d.c.; it also contains additional requirements for integrally fused circuit-breakers.

It applies whatever the rated currents, the method of construction or the proposed applications of the circuit-breakers may be.

The requirements for circuit-breakers which are also intended to provide earth-leakage protection are contained in Annex B.

The additional requirements for circuit-breakers with electronic over-current protection are contained in Annex F.

The additional requirements for circuit-breakers for IT systems are contained in Annex H.

The requirements and test methods for electromagnetic compatibility of circuit-breakers are contained in Annex J.

The requirements for circuit-breakers not fulfilling the requirements for over-current protection are contained in Annex L.

The requirements for modular residual current devices (without integral current breaking device) are contained in Annex M.

The requirements and test methods for electromagnetic compatibility of circuit-breaker auxiliaries are contained in Annex N.

Supplementary requirements for circuit-breakers used as direct-on-line starters are given in IEC 60947-4-1, applicable to low-voltage contactors and starters.

The requirements for circuit-breakers for the protection of wiring installations in buildings and similar applications, and designed for use by uninstructed persons, are contained in IEC 60898.

The requirements for circuit-breakers for equipment (for example electrical appliances) are contained in IEC 60934.