Petroleum and natural gas industry - Pipeline transportation systems - Pipeline integrity management specification

Part 2: Full-life cycle integrity management for offshore pipeline
National foreword

This British Standard is the UK implementation of EN ISO 19345-2:2019. It is identical to ISO 19345-2:2019.

BSI, as a member of CEN, is obliged to publish EN ISO 19345-2:2019 as a British Standard. However, attention is drawn to the fact that during the development of this European Standard, the UK committee voted against its approval.

The UK committee voted against the publication of EN ISO 19345-2:2019 because, although it is intended as guidance to help users develop an integrity plan, it gives detailed, prescriptive requirements that are not compatible with the goal-setting approach to pipeline integrity management provided in the Pipelines Safety Regulations 1996. The committee advises that users in the UK refer to the PD 8010 series for appropriate guidance.

The UK participation in its preparation was entrusted to Technical Committee PSE/17/2, Transmission pipelines.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2019
Published by BSI Standards Limited 2019

ISBN 978 0 580 84947 3

ICS 75.200

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 July 2019.

Amendments/corrigenda issued since publication

Date Text affected
Petroleum and natural gas industry - Pipeline transportation systems - Pipeline integrity management specification - Part 2: Full-life cycle integrity management for offshore pipeline (ISO 19345-2:2019)

This European Standard was approved by CEN on 9 February 2019.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.
European foreword

This document (EN ISO 19345-2:2019) has been prepared by Technical Committee ISO/TC 67 "Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries" in collaboration with Technical Committee CEN/TC 12 "Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries" the secretariat of which is held by NEN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by December 2019, and conflicting national standards shall be withdrawn at the latest by December 2019.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Endorsement notice

The text of ISO 19345-2:2019 has been approved by CEN as EN ISO 19345-2:2019 without any modification.
Contents

Foreword .. vii
Introduction viii

1 Scope .. 1
2 Normative references 3
3 Terms, definitions and abbreviated terms 3
 3.1 Terms and definitions 3
 3.2 Abbreviated terms 7
4 General 8
 4.1 Key principles 8
 4.2 Integrity management program 8
 4.2.1 General 8
 4.2.2 Introduction to IMP elements .. 8
 4.3 Integrity management process elements 11
 4.3.1 Data acquisition, review and integration 11
 4.3.2 Risk assessment 11
 4.3.3 Inspection and monitoring 11
 4.3.4 Integrity assessment 11
 4.3.5 Mitigation activity 12
 4.3.6 Performance measurement and improvement 12
 4.3.7 Emergency response plan 12
 4.3.8 Failure management plan 12
 4.3.9 Remaining life assessment 12
 4.4 Management elements 13
 4.4.1 Policy and commitment 13
 4.4.2 Scope of integrity management program 13
 4.4.3 Organization structure, roles and responsibilities 13
 4.4.4 Records and document control plan 13
 4.4.5 Communication plan 13
 4.4.6 Management of change plan .. 13
 4.4.7 Management review and audit plan 14
 4.4.8 Training and skill plan 14

5 Integrity management for the pipeline lifecycle phases 14
 5.1 General 14
 5.1.1 Objectives 14
 5.1.2 Principles 14
 5.2 Key lifecycle integrity processes 15
 5.3 Lifecycle phases for integrity management 15
 5.3.1 General 15
 5.3.2 Feasibility 15
 5.3.3 Design 16
 5.3.4 Procurement 16
 5.3.5 Fabrication 17
 5.3.6 Transportation and storage 17
 5.3.7 Integrity during installation .. 17
 5.3.8 Pre-commissioning and commissioning 18
 5.3.9 Handover — Preparation for operation 18
 5.3.10 Operation and maintenance .. 19
 5.3.11 Modifications during operations 20
 5.3.12 Abandonment 20

6 Risk assessment 20
 6.1 Definition of objectives and requirements 20
 6.1.1 General 20
7 Inspection and monitoring

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Inspection</td>
<td>26</td>
</tr>
<tr>
<td>7.1.1 General</td>
<td>27</td>
</tr>
<tr>
<td>7.1.2 Preparation for inspection</td>
<td>28</td>
</tr>
<tr>
<td>7.1.3 Requirements of equipment</td>
<td>28</td>
</tr>
<tr>
<td>7.1.4 Reporting requirements</td>
<td>29</td>
</tr>
<tr>
<td>7.1.5 Review of inspection results</td>
<td>31</td>
</tr>
<tr>
<td>7.2 Monitoring</td>
<td>31</td>
</tr>
<tr>
<td>7.2.1 Main monitoring activities</td>
<td>31</td>
</tr>
<tr>
<td>7.2.2 Identification and follow-up of available technology</td>
<td>31</td>
</tr>
<tr>
<td>7.2.3 Current and vibration monitoring</td>
<td>32</td>
</tr>
<tr>
<td>7.2.4 Monitoring of ship traffic and fishing activities</td>
<td>32</td>
</tr>
<tr>
<td>7.2.5 Leak detection</td>
<td>32</td>
</tr>
<tr>
<td>7.2.6 Review of monitoring data</td>
<td>33</td>
</tr>
</tbody>
</table>

8 Integrity assessment

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 General</td>
<td>33</td>
</tr>
<tr>
<td>8.2 Fitness for purpose</td>
<td>33</td>
</tr>
<tr>
<td>8.2.1 Assessment data collection</td>
<td>33</td>
</tr>
<tr>
<td>8.2.2 Defect data statistics and causation analysis</td>
<td>33</td>
</tr>
<tr>
<td>8.2.3 Assessment method selection</td>
<td>34</td>
</tr>
<tr>
<td>8.2.4 Residual strength and remaining life assessment</td>
<td>34</td>
</tr>
<tr>
<td>8.3 Pressure test</td>
<td>36</td>
</tr>
<tr>
<td>8.3.1 General</td>
<td>36</td>
</tr>
<tr>
<td>8.3.2 Preconditions for use of pressure-testing on an in-service pipeline</td>
<td>36</td>
</tr>
<tr>
<td>8.3.3 Features to be considered for pressure test</td>
<td>37</td>
</tr>
<tr>
<td>8.3.4 Pressure test risks</td>
<td>37</td>
</tr>
<tr>
<td>8.3.5 Management measures</td>
<td>37</td>
</tr>
<tr>
<td>8.3.6 Monitoring of pressure test procedures</td>
<td>38</td>
</tr>
<tr>
<td>8.3.7 Review of pressure test results</td>
<td>38</td>
</tr>
<tr>
<td>8.3.8 Pressure test report</td>
<td>38</td>
</tr>
<tr>
<td>8.4 Direct assessment</td>
<td>38</td>
</tr>
<tr>
<td>8.4.1 General</td>
<td>38</td>
</tr>
<tr>
<td>8.4.2 Direct assessment process</td>
<td>39</td>
</tr>
<tr>
<td>8.4.3 Direct assessment methods</td>
<td>39</td>
</tr>
<tr>
<td>8.4.4 Limitations of direct assessment</td>
<td>39</td>
</tr>
<tr>
<td>8.5 Other assessment</td>
<td>39</td>
</tr>
</tbody>
</table>

9 Mitigation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 General</td>
<td>39</td>
</tr>
<tr>
<td>9.2 Internal mitigation methods</td>
<td>42</td>
</tr>
<tr>
<td>9.3 External mitigation methods</td>
<td>42</td>
</tr>
<tr>
<td>9.4 Corrosion control systems</td>
<td>43</td>
</tr>
<tr>
<td>9.4.1 External corrosion</td>
<td>43</td>
</tr>
<tr>
<td>9.4.2 Internal corrosion and erosion</td>
<td>43</td>
</tr>
<tr>
<td>9.5 Management of unintended releases</td>
<td>44</td>
</tr>
<tr>
<td>9.6 MAOP reduction</td>
<td>44</td>
</tr>
</tbody>
</table>
9.7 Emergency response
9.8 Repair methods
 9.8.1 Repair methods selection
 9.8.2 Detailed procedures
10 Performance measurement and improvement
 10.1 General
 10.2 Performance measurement
 10.3 Management review
 10.4 System audit
11 Data management
 11.1 Data acquisition
 11.1.1 Data acquisition content
 11.1.2 Data acquisition method
 11.1.3 Data alignment
 11.2 Data transfer
 11.3 Data integration
 11.3.1 General
 11.3.2 Data integration requirements
12 Pipeline integrity management within emergency response planning and failure management
 12.1 Emergency response planning
 12.1.1 General
 12.1.2 Emergency plan preparation
 12.1.3 Preparation for emergency data
 12.1.4 Emergency response
 12.2 Failure management
 12.2.1 General
 12.2.2 Failure analysis
 12.2.3 Incident investigation report
 12.2.4 Remedial and preventative measures
 12.2.5 Failure recovery prior to restart
 12.2.6 Trend analysis of pipeline incidents and causes
13 Pipeline remaining life assessment and abandonment processes
 13.1 General
 13.2 Pipeline remaining life assessment process
 13.2.1 General
 13.2.2 Data collection
 13.2.3 Pipeline segmentation
 13.2.4 Integrity assessment
 13.2.5 Physical life determination
 13.2.6 Economic viability assessment
 13.2.7 Risk assessment
 13.2.8 Remaining life assessment
 13.3 Deactivation and abandonment process
 13.3.1 Guideline for the abandonment of a transportation pipeline
 13.3.2 Preparation before pipeline abandonment
 13.3.3 Pipeline cleaning
 13.3.4 Deactivation of pipeline
 13.3.5 Records
 13.4 Life extension and recycle of pipeline
 13.4.1 Life extension
 13.4.2 Reactivation of pipeline
 13.5 Uprating
 13.5.1 General requirements
 13.5.2 Limitation on increase in maximum allowable operating pressure
 13.5.3 Uprating method
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 67, Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries, Subcommittee SC 2, Pipeline transportation systems.

A list of all parts in the ISO 19345 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user’s national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.
Introduction

This document addresses the integrity of petroleum and natural gas pipelines through their entire life-cycle, from design to eventual abandonment. For this reason, considerations relating to design, construction and abandonment have been included. This approach supports the development and implementation of a holistic and integrated pipeline integrity management program that bridges between life-cycle elements and thereby avoids compartmentalizing of the pipeline life-cycle into essentially independent data and functional silos, which has traditionally been the case. The integrated approach was developed on the basis of extensive research and examination of best practices and results from pipeline integrity audits world-wide.

This document is intended to be used by companies that have not yet developed an official program or are developing a program for new pipelines. This document can also be used to guide continual improvement of existing programs by both operating companies and regulators to evaluate integrity management program effectiveness.
Petroleum and natural gas industry — Pipeline transportation systems — Pipeline integrity management specification —

Part 2:
Full-life cycle integrity management for offshore pipeline

1 Scope

This document specifies requirements and gives recommendations on the management of integrity of a pipeline system throughout its life cycle, which includes design, construction, commissioning, operation, maintenance and abandonment.

This document is applicable to offshore pipelines for transporting petroleum and natural gas. It is applicable to rigid steel pipelines. It is not applicable to flexible pipelines, dynamic risers or those constructed from other materials, such as glass-reinforced plastics.

NOTE 1 An offshore pipeline system extends to:
— the first valve, flange or connection above water on platform or subsea mechanical connector with subsea structure (i.e. manifold or dynamic riser);
— the connection point to the offshore installation (i.e. piping manifolds are not included);
— the first valve, flange, connection or isolation joint at a landfall, unless otherwise specified by the onshore legislation.

NOTE 2 The components mentioned above (valve, flange, connection, isolation joint) include also any pup pieces, i.e. the offshore pipeline system extends to the weld beyond the pup piece, see Figure 1.

This document is used for integrity management, which is initiated at the design and construction stage of the pipeline. Where requirements of a design and construction standard (e.g. ISO 13623) are different, the provisions of this document will enhance the design and construction from an integrity perspective.