Stationary source emissions — Determination of the mass concentration of PCDDs/PCDFs and dioxin-like PCBs
Part 5: Long-term sampling of PCDDs/PCDFs and PCBs
This Published Document is the UK implementation of CEN/TS 1948-5:2015.

The UK participation in its preparation was entrusted to Technical Committee EH/2/1, Stationary source emission.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2015. Published by BSI Standards Limited 2015

ISBN 978 0 580 85314 2

ICS 13.040.40

Compliance with a British Standard cannot confer immunity from legal obligations.

This Published Document was published under the authority of the Standards Policy and Strategy Committee on 30 April 2015.

Amendments issued since publication

Date Text affected
Stationary source emissions - Determination of the mass concentration of PCDDs/PCDFs and dioxin-like PCBs - Part 5: Long-term sampling of PCDDs/PCDFs and PCBs

This Technical Specification (CEN/TS) was approved by CEN on 29 December 2014 for provisional application.

The period of validity of this CEN/TS is limited initially to three years. After two years the members of CEN will be requested to submit their comments, particularly on the question whether the CEN/TS can be converted into a European Standard.

CEN members are required to announce the existence of this CEN/TS in the same way as for an EN and to make the CEN/TS available promptly at national level in an appropriate form. It is permissible to keep conflicting national standards in force (in parallel to the CEN/TS) until the final decision about the possible conversion of the CEN/TS into an EN is reached.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>6</td>
</tr>
<tr>
<td>Introduction</td>
<td>7</td>
</tr>
<tr>
<td>1. Scope</td>
<td>9</td>
</tr>
<tr>
<td>2. Normative references</td>
<td>9</td>
</tr>
<tr>
<td>3. Terms and definitions</td>
<td>10</td>
</tr>
<tr>
<td>4. Symbols and abbreviations</td>
<td>13</td>
</tr>
<tr>
<td>4.1 General</td>
<td>13</td>
</tr>
<tr>
<td>4.2 Polychlorinated biphenyls, polychlorinated dibenzodioxins and polychlorinated dibenzofuranes</td>
<td>13</td>
</tr>
<tr>
<td>5. Principle of long-term PCDD/PCDF/PCB sampling</td>
<td>14</td>
</tr>
<tr>
<td>5.1 General</td>
<td>14</td>
</tr>
<tr>
<td>5.2 Long-term sampling based on the filter/condenser method</td>
<td>14</td>
</tr>
<tr>
<td>5.3 Long-term sampling based on the dilution method</td>
<td>15</td>
</tr>
<tr>
<td>5.4 Long-term sampling based on the cooled probe method</td>
<td>15</td>
</tr>
<tr>
<td>6. Sampling device and materials</td>
<td>15</td>
</tr>
<tr>
<td>6.1 General sampling device</td>
<td>15</td>
</tr>
<tr>
<td>6.2 Components for the sampling train</td>
<td>15</td>
</tr>
<tr>
<td>6.3 Automatic controller</td>
<td>16</td>
</tr>
<tr>
<td>6.4 Devices for measuring the flue gas parameters</td>
<td>16</td>
</tr>
<tr>
<td>6.5 Materials</td>
<td>16</td>
</tr>
<tr>
<td>7. Minimum requirements for long-term PCDD/PCDF/PCB sampling methods</td>
<td>17</td>
</tr>
<tr>
<td>7.1 Certification of the sampling system</td>
<td>17</td>
</tr>
<tr>
<td>7.2 Validation of the installation/functioning on each plant to be fulfilled by the plant operator</td>
<td>19</td>
</tr>
<tr>
<td>7.2.1 Long-term PCDD/PCDF/PCB sampling systems using sampling units which have to be prepared in the laboratory</td>
<td>19</td>
</tr>
<tr>
<td>7.2.2 Minimum requirements for set-up</td>
<td>19</td>
</tr>
<tr>
<td>7.2.3 Minimum requirements for selecting the sampling point</td>
<td>19</td>
</tr>
<tr>
<td>7.2.4 Minimum requirements for sampling</td>
<td>20</td>
</tr>
<tr>
<td>7.3 Minimum requirements for on-going operations on each plant to be fulfilled at regular time intervals by the plant operator</td>
<td>24</td>
</tr>
<tr>
<td>7.3.1 Regular check-up</td>
<td>24</td>
</tr>
<tr>
<td>7.3.2 Maintenance</td>
<td>24</td>
</tr>
<tr>
<td>8. Quality assurance</td>
<td>26</td>
</tr>
<tr>
<td>8.1 General</td>
<td>26</td>
</tr>
<tr>
<td>8.2 Quality assurance for the sampling unit</td>
<td>26</td>
</tr>
<tr>
<td>8.2.1 Leak check</td>
<td>26</td>
</tr>
<tr>
<td>8.2.2 Field blank</td>
<td>26</td>
</tr>
<tr>
<td>8.3 Quality assurance for sampling volume</td>
<td>26</td>
</tr>
<tr>
<td>8.3.1 Initial quality assurance</td>
<td>26</td>
</tr>
<tr>
<td>8.3.2 Ongoing quality assurance on site</td>
<td>26</td>
</tr>
<tr>
<td>8.4 Quality assurance of isokinetic sampling</td>
<td>27</td>
</tr>
<tr>
<td>8.5 Quality assurance of flue gas conditions (O₂ content, temperature, pressure, humidity)</td>
<td>27</td>
</tr>
<tr>
<td>9. Analytical procedure</td>
<td>27</td>
</tr>
<tr>
<td>9.1 General</td>
<td>27</td>
</tr>
<tr>
<td>9.2 Extraction of the sample</td>
<td>28</td>
</tr>
<tr>
<td>9.3 Partitioning of the sample extract</td>
<td>28</td>
</tr>
</tbody>
</table>
9.4 Clean-up .. 31
9.5 Identification and quantification .. 31
9.6 Calculation of the recovery rates of the extraction standards ... 31
9.7 Calculation of results .. 31
10 Estimation of uncertainty of the method ... 32
10.1 General ... 32
10.2 Elements required for the uncertainty determinations ... 32
10.2.1 Model formula and parameters ... 32
10.2.2 Expanded uncertainty ... 34
11 Reporting ... 34
11.1 Sampling and analytical report .. 34
11.2 Record keeping every half hour .. 36
11.3 Interruptions recording ... 37
11.4 Reporting of the method validation (from manufacturer and test house) .. 37
Annex A (normative) Overview of minimum requirements ... 39
Annex B (informative) Cleaning of the probe ... 41
Annex C (normative) Performance criteria and test procedure for certification 42
C.1 General relation to other standards .. 42
C.2 General requirements ... 42
C.2.1 Application of the minimum requirements .. 42
C.2.2 Certification ranges ... 42
C.3 Performance criteria common to all long-term PCDD/PCDF/PCB sampling systems for laboratory testing .. 42
C.3.1 Performance criteria for the automatic isokinetic control ... 42
C.3.2 Requirements of EN 15267-3 .. 42
C.4 Performance criteria common to all long-term PCDD/PCDF/PCB sampling systems for field testing .. 42
C.4.1 For the automatic isokinetic control ... 43
C.4.2 Event of long-term sampling .. 43
C.4.3 Status information .. 43
C.4.4 Availability .. 43
C.4.5 Reproducibility .. 43
C.4.6 Automatic post-adjustment unit .. 43
C.4.7 Loss of PCDD/PCDF/PCB to be determined in the sampling line .. 44
C.4.8 Number of values to be determined ... 44
C.4.9 Labelling ... 44
C.4.10 Storage life .. 44
C.4.11 Blank value .. 44
C.4.12 Relation to the plant conditions ... 44
C.4.13 Isokinetic sampling .. 44
C.4.14 Essential characteristic data ... 44
Annex D (informative) Examples of devices and operation for long-term sampling systems 45
Parameters to be checked

Influence on the isokinetic sampling over several days and weeks

General

Automatic features of long-term sample automated features

Isokinetic flow control

Sampling

Leak test procedure

Handling procedure

Spiking position

Control cabinet

Sampling probe

Summary of apparatus design

Cooled probe method

Long-term sample automated features

Assembly procedure

Spiking position

Sucking and measurement unit

Extraction unit

General

Summary of apparatus design

Dilution method

Long-term sample automated features

Sample gas flow control

Sampling

Ass

Spiking position

Control unit

Sampling unit

General

Summary of apparatus design

Filter/condenser method

Long-term sampling system

Annex E (informative) Fundamentals of isokinetic sampling

Isokinetic sampling

General

Influence on the isokinetic sampling over several days and weeks

Parameters to be checked
E.1.3.1 Pitot constant .. 57
E.1.3.2 \(\Delta p_i \) differential pressure ... 58
E.1.3.3 \(p_s \) static pressure .. 58
Annex F (informative) Example for the determination of the representative sampling point 60
Annex G (informative) Estimation of the uncertainty of measured PCDD/PCDF of the long-term sampling system ... 63
G.1 General .. 63
G.2 Analysis of the measurement process and mathematical modelling 63
G.2.1 Basic formula of the calculation of the concentration of each of the PCDD/PCDF congeners .. 63
G.2.2 Determination of the sampled gas volume collected by a volumetric meter 64
G.2.2.1 Volume at the actual conditions of temperature and pressure of the gas meter 64
G.2.2.2 Volume sampled at standard temperature and pressure conditions, on dry gas (in case of the volume measurement of dry gas) ... 64
G.2.3 Sources of errors .. 65
G.3 Application of the law of propagation of uncertainties .. 66
G.3.1 Total concentration of PCDD/PCDF .. 66
G.3.2 Determination of the gas volume collected by a volumetric meter 66
G.4 Calculation of type uncertainties .. 66
G.4.1 Calculation of the concentration of each of the PCDD/PCDF congeners considered 66
G.4.2 Total concentration of PCDD/PCDF .. 67
G.4.3 Determination of the volume of gas by a volumetric meter .. 67
G.4.3.1 Volume at actual conditions of temperature, pressure and humidity 67
G.4.3.2 Dry volume at standard conditions of temperature and pressure 67
G.4.3.2.1 Case of the measurement of a volume of dry gas \(V = V_d \) ... 67
G.4.3.2.2 Corrections on temperature measurements .. 69
G.5 Calculation of expanded uncertainty .. 69
G.6 Example of digital application: measurement of dioxin/furan-concentration 69
G.6.1 Specific conditions on site .. 69
G.6.2 Performance characteristics of the method ... 72
G.6.3 Calculation of the concentration ... 73
G.6.4 Calculation of standard uncertainties .. 74
G.6.5 Calculation of the expanded uncertainty associated with concentration 75
Annex H (informative) Example for calculation of measurement results for standard conditions 76
H.1 General .. 76
H.2 Dry volumetric flow rate in standard conditions ... 76
Annex I (normative) Adaption of the maximum deviation in relation to the PCDD/PCDF/PCB concentration .. 78
Bibliography ... 80
Foreword

This document (CEN/TS 1948-5:2015) has been prepared by Technical Committee CEN/TC 264 “Air quality”, the secretariat of which is held by DIN.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to announce this Technical Specification: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.
Introduction

EN 1948-1, EN 1948-2, EN 1948-3 and EN 1948-4 describe reference methods for the determination of PCDD/PCDF/PCB, whereas this Technical Specification gives requirements for long-term sampling measurements in connection with the appropriate analytical methods (equivalent method). In contrast to the standard reference method (EN 1948-1) which refers to monitoring the limit value for compliance with emission limit values (ELVs) in Directives, such as Industrial Emission Directive (IED) [10], the long-term sampling is intended to determine the average concentration level during a longer period (see e.g. [12], [13]).

CEN/TS 1948-5 provides a method for measuring long term average mass concentrations but it does not specify its potential use by the competent authority for demonstrating compliance with long term ELVs.

Long-term sampling methods are not automatic measurement methods and do not provide continuous emission monitoring data (real time display).

This Technical Specification in connection with EN 1948-2 and EN 1948-3 (extraction and analysis) are necessary for the performance of long-term sampling of PCDDs/PCDFs/PCBs.

In some European Union countries PCDD/PCDF/PCB long-term sampling is an obligatory measurement for some incineration processes. In other countries of the European Union this may be obligatory in the future.

The European Organization for Standardization (CEN) draws attention to the fact that it is claimed that compliance with this document may involve the use of patents concerning the use of PCDD/PCDF/PCB long-term sampling systems, described in this document. This is valid for:

a) the filter/condenser method (see 5.2) and
b) the cooled probe method (see 5.4).

CEN takes no position concerning the evidence, validity and scope of these patent rights.

The holder of this patent right has ensured CEN and CENELEC that he is willing to negotiate licenses under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holder of this patent right is registered with CEN and CENELEC. Information may be obtained from:

c) TECORA
 211-215 rue de la France
 94134 Fontenay sous Bois
 France

d) Environment S.A
 111, bd Robespierre
 78304 Poissy Cedex
 France

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those identified above. CEN and CENELEC shall not be held responsible for identifying any or all such patent rights.
It should be mentioned that also a patent right existed for the dilution method (see 5.3). This patent was phased out in September 2014.

In Reference [1] the results of a round robin test for long-term sampling are presented.

WARNING All relevant national safety regulations shall be observed. The 2,3,7,8-chlorine substituted PCDDs/PCDFs belong to the most toxic of chemicals. In addition working at the sampling site may include exposure to a range of hazards such as poisonous/asphyxiating flue gases and working at heights. Appropriate measures shall be taken to minimize exposure to such hazards. Care shall be taken when transporting samples to avoid their breakage both to prevent contamination and to avoid sample losses.
1 Scope

This Technical Specification specifies the long-term sampling of PCDDs, PCDFs and PCBs. There are three different sampling methods, which use the three different principles described in EN 1948-1 modified for long-term sampling requirements:

— filter/condenser method;
— dilution method;
— cooled probe method.

Each sampling method is illustrated in detail in Annex D. The sampling methods described in this document are designed for a sampling duration of typically four weeks.

Additionally this document specifies a framework of quality control requirements for any long-term sampling method to be applied (see Annex C and Annex F).

With the methods described experiences were gained for a concentration range from typically 0.003 ng I-TEQ/m3 up to 4.0 ng I-TEQ/m3 and 0.003 ng WHO-TEQ/m3 up to 4.0 ng WHO-TEQ/m3 respectively at different stationary sources (e.g. waste incinerators, sinter plants, cement kilns).

For the complete measurement method the use of EN 1948-2 and EN 1948-3 describing extraction and clean-up and identification and quantification, respectively, is necessary in order to determine PCDDs/PCDFs. Also EN 1948-4 is necessary for the analyses of dioxin-like PCBs.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 1948-1:2006, Stationary source emissions - Determination of the mass concentration of PCDDs/PCDFs and dioxin-like PCBs - Part 1: Sampling of PCDDs/PCDFs

EN 1948-2:2006, Stationary source emissions - Determination of the mass concentration of PCDDs/PCDFs and dioxin-like PCBs - Part 2: Extraction and clean-up of PCDDs/PCDFs

EN 1948-3:2006, Stationary source emissions - Determination of the mass concentration of PCDDs/PCDFs and dioxin-like PCBs - Part 3: Identification and quantification of PCDDs/PCDFs

EN 1948-4:2010+A1:2013, Stationary source emissions - Determination of the mass concentration of PCDDs/PCDFs and dioxin-like PCBs - Part 4: Sampling and analysis of dioxin-like PCBs

EN 15259:2007, Air quality - Measurement of stationary source emissions - Requirements for measurement sections and sites and for the measurement objective, plan and report

EN 15267-1, Air quality - Certification of automated measuring systems - Part 1: General principles

EN 15267-2, Air quality - Certification of automated measuring systems - Part 2: Initial assessment of the AMS manufacturer's quality management system and post certification surveillance for the manufacturing process