BSI Standards Publication

Calibration of optical time-domain reflectometers (OTDR)

Part 1: OTDR for single-mode fibres
This British Standard is the UK implementation of EN 61746-1:2011, incorporating corrigendum September 2014. It is identical to IEC 61746-1:2009. It supersedes BS EN 61746:2005, which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee GEL/86, Fibre optics.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2014. Published by BSI Standards Limited 2014

ISBN 978 0 580 88108 4

ICS 33.180.01

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 June 2011.

Amendments/corrigenda issued since publication

<table>
<thead>
<tr>
<th>Date</th>
<th>Text affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 November 2014</td>
<td>Implementation of CENELEC corrigendum September 2014: Supersession information updated</td>
</tr>
</tbody>
</table>
Calibration of optical time-domain reflectometers (OTDR) -
Part 1: OTDR for single-mode fibres

(IEC 61746-1:2009)
The text of document 86/347/FDIS, future edition 1 of IEC 61746-1, prepared by IEC TC 86, Fibre optics, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as EN 61746-1 on 2011-01-02.

This European Standard supersedes EN 61746:2005.

The main technical changes to EN 61746:2005 are:

- the adaptation of Clause 4;
- the deletion of Clause 10;
- the adaptation of some definitions and calculations;
- the change of graphical symbology to IEC/TR 61930.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and CENELEC shall not be held responsible for identifying any or all such patent rights.

The following dates were fixed:

- latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement (dop) 2011-10-02
- latest date by which the national standards conflicting with the EN have to be withdrawn (dow) 2014-01-02

Annex ZA has been added by CENELEC.

Endorsement notice

The text of the International Standard IEC 61746-1:2009 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

[7] IEC 61300-3-2 NOTE Harmonized as EN 61300-3-2.
[8] IEC 61300-3-6 NOTE Harmonized as EN 61300-3-6.
Annex ZA
(normative)

Normative references to international publications with their corresponding European publications

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

<table>
<thead>
<tr>
<th>Publication</th>
<th>Year</th>
<th>Title</th>
<th>EN/HD</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60793-1-40 (mod)</td>
<td>-</td>
<td>Optical fibres - Part 1-40: Measurement methods and test procedures - Attenuation</td>
<td>EN 60793-1-40</td>
<td>-</td>
</tr>
<tr>
<td>IEC 60793-2-50</td>
<td>-</td>
<td>Optical fibres - Part 2-50: Product specifications - Sectional specification for class B single-mode fibres</td>
<td>EN 60793-2-50</td>
<td>-</td>
</tr>
<tr>
<td>ISO/IEC 17025</td>
<td>-</td>
<td>General requirements for the competence of testing and calibration laboratories</td>
<td>EN ISO/IEC 17025</td>
<td>-</td>
</tr>
<tr>
<td>ITU-T Recommendation G.650.1</td>
<td>2004</td>
<td>Definitions and test methods for linear, deterministic attributes of single-mode fibre and cable</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ITU-T Recommendation G.650.2</td>
<td>2002</td>
<td>Definitions and test methods for statistical and non-linear related attributes of single-mode fibre and cable</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
CONTENTS

INTRODUCTION. ...8

1 Scope..9

2 Normative references ..9

3 Terms, definitions and symbols ..9

4 Preparation for calibration ..16
 4.1 Organization ..16
 4.2 Traceability ..16
 4.3 Preparation ..16
 4.4 Test conditions ..16
 4.5 Documentation ..16

5 Distance calibration – General ...17
 5.1 General ...17
 5.2 Location deviation model ..17
 5.3 Using the calibration results ...19
 5.4 Measuring fibre length ...19

6 Distance calibration methods ...20
 6.1 General ..20
 6.2 External source method ...20
 6.2.1 Short description and advantage ..20
 6.2.2 Equipment ...20
 6.2.3 Calibration of the equipment ...21
 6.2.4 Measurement procedure ...22
 6.2.5 Calculations and results ...23
 6.2.6 Uncertainties ..24
 6.3 Concatenated fibre method ...25
 6.3.1 Short description and advantages ..25
 6.3.2 Equipment ...25
 6.3.3 Measurement procedures ..27
 6.3.4 Calculations and results ...27
 6.3.5 Uncertainties ..28
 6.4 Recirculating delay line method ..29
 6.4.1 Short description and advantage ..29
 6.4.2 Equipment ...29
 6.4.3 Measurement procedure ...31
 6.4.4 Calculations and results ...31
 6.4.5 Uncertainties ..32

7 Loss calibration – General ...33
 7.1 General ..33
 7.2 Determination of the displayed power level F' ..33
 7.3 Selection of an appropriate reference loss A_{ref} ...34
 7.4 Development of a test plan ...35
 7.5 Polarization dependence ..37
 7.6 Calculation of the calibration results ..38
 7.7 Using the calibration results ...38

8 Loss calibration methods ..38
Figure 1 – Definition of attenuation dead zone ... 10
Figure 2 – Representation of the location deviation $\Delta L(L)$.. 18
Figure 3 – Equipment for calibration of the distance scale – External source method 21
Figure 4 – Set-up for calibrating the system insertion delay ... 22
Figure 5 – Concatenated fibres used for calibration of the distance scale 26
Figure 6 – Distance calibration with a recirculating delay line 30
Figure 7 – OTDR trace produced by recirculating delay line ... 30
Figure 8 – Determining the reference level and the displayed power level 34
Figure 9 – Measurement of the OTDR loss samples ... 35
Figure 10 – Region A, the recommended region for loss measurement samples 36
Figure 11 – Possible placement of sample points within region A 36
Figure 12 – External source method for testing the polarization dependence of the OTDR ... 37
Figure 13 – Reflection method for testing the polarization dependence of the OTDR 37
Figure 14 – Loss calibration with a fibre standard .. 39
Figure 15 – Placing the beginning of section D_1 outside the attenuation dead zone 40
Figure 16 – Loss calibration with the external source method ... 43
Figure 17 – Location and measurements for external source method 44
Figure 18 – Set-up for loss calibration with splice simulator ... 46
Figure 19 – OTDR display with splice simulator ... 47
Figure 20 – Measurement of the splice loss ... 48
Figure 21 – Loss calibration with "fibre-end" variant of the power reduction method 51
Figure 22 – Loss calibration with "long-fibre" variant of the power reduction method 52
Figure 23 – Parameters involved in reflectance measurements 54
Figure 24 – The same reflectance at the end of three fibres with different values of the backscatter parameter shows different pulse amplitudes ... 55
Figure 25 – Maximum and minimum values for the pulse amplitude, ΔF 56
Figure 26 – Range of reflectance measurement ... 56
Figure 27 – Determining the default displayed power level and the default location 57
Figure 28 – Set-up for reflectance calibration ... 58
Figure A.1 – Recirculating delay line ... 60
Figure A.2 – Measurement set-up for loop transit time T_b ... 61
Figure A.3 – Calibration set-up for lead-in transit time T_a ... 62
Figure B.1 – Determination of a highly linear power range ... 65
Figure B.2 – Testing the longitudinal backscatter uniformity of the fibre standard 66
Figure C.1 – Splice simulator and idealized OTDR signature ... 68
Figure C.2 – Determination of the reference loss A_{ref} ... 70
Figure E.1 – Reflectance standard description and trace ... 75
Figure E.2 – Calibration set up and reference points for calibration 78
Figure F.1 – Reflectance standard description and trace ... 81
Figure F.2 – Calibration set up and reference points for calibration 83
Figure G.1 – OTDR signals used for determining reflectance ... 86
Figure G.2 – Set-up for measurement of the backscatter coefficient 88
Table 1 – Attenuation coefficients defining region A
INTRODUCTION

In order for an Optical time-domain reflectometer (OTDR) to qualify as a candidate for complete calibration using this standard, it must be equipped with the following minimum feature set:

a) a programmable index of refraction, or equivalent parameter;
b) the ability to present a display of a trace representation, with a logarithmic power scale and a linear distance scale;
c) two markers/cursors, which display the loss and distance between any two points on a trace display;
d) the ability to measure absolute distance (location) from the OTDR's zero-distance reference;
e) the ability to measure the displayed power level relative to a reference level (for example, the clipping level);
f) the ability to evaluate the reflectance of a reflective event.
CALIBRATION OF OPTICAL TIME-DOMAIN REFLECTOMETERS (OTDR) –

Part 1: OTDR for single mode fibres

1 Scope

This part of IEC 61746 provides procedures for calibrating single-mode optical time domain reflectometers (OTDR). It only covers OTDR measurement errors and uncertainties.

This standard does not cover correction of the OTDR response.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories

3 Terms, definitions and symbols

For the purposes of this document, the following terms, definitions and symbols apply.

NOTE For more precise definitions, the references to IEC 60050-731 should be consulted.

3.1 attenuation loss

\[A = 10 \log_{10} \left(\frac{P_{\text{in}}}{P_{\text{out}}} \right) \text{ dB} \]

[IEV 731-01-48, modified]