PD CEN/TS 15634-5:2016

BSI Standards Publication

Foodstuffs — Detection of food allergens by molecular biological methods

Part 5: Mustard (Sinapis alba) and soya (Glycine max) — Qualitative detection of a specific DNA sequence in cooked sausages by real-time PCR

This Published Document is the UK implementation of CEN/TS 15634-5:2016.

The UK participation in its preparation was entrusted to Technical Committee AW/275, Food analysis - Horizontal methods.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2016. Published by BSI Standards Limited 2016

ISBN 978 0 580 90303 8 ICS 07.100.30; 67.120.10

Compliance with a British Standard cannot confer immunity from legal obligations.

This Published Document was published under the authority of the Standards Policy and Strategy Committee on 31 July 2016.

Amendments/corrigenda issued since publication

Date Text affected

TECHNICAL ODECIEICATION

This is a preview of "PD CEN/TS 15634-5:20...". Click here to purchase the full version from the ANSI store.

TECHNISCHE SPEZIFIKATION

June 2016

ICS 07.100.30; 67.120.10

English Version

Foodstuffs - Detection of food allergens by molecular biological methods - Part 5: Mustard (Sinapis alba) and soya (Glycine max) - Qualitative detection of a specific DNA sequence in cooked sausages by real-time PCR

Lebensmittel - Nachweis von Lebensmittelallergenen mit molekularbiologischen Verfahren - Teil 5: Senf (Sinapis alba) sowie Soja (Glycine max) - Qualitativer Nachweis einer spezifischen DNA-Sequenz in Brühwürsten mittels Real-time PCR

This Technical Specification (CEN/TS) was approved by CEN on 18 April 2016 for provisional application.

The period of validity of this CEN/TS is limited initially to three years. After two years the members of CEN will be requested to submit their comments, particularly on the question whether the CEN/TS can be converted into a European Standard.

CEN members are required to announce the existence of this CEN/TS in the same way as for an EN and to make the CEN/TS available promptly at national level in an appropriate form. It is permissible to keep conflicting national standards in force (in parallel to the CEN/TS) until the final decision about the possible conversion of the CEN/TS into an EN is reached.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2016 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No. CEN/TS 15634-5:2016 E

Contents

European foreword		
1	Scope	4
2	Principle	4
3	Reagents	4
4	Apparatus and equipment	6
5	Procedure	6
5.1	General	6
5.2	Sample preparation	6
5.3	DNA extraction with CTAB	
5.4	DNA purification by means of solid phase extraction	7
5.5	Measuring the mass concentration of the extracted DNA and setting to target	
	concentration	8
5.6	Real-time PCR	8
5.7	Temperature/Time program	9
6	Validation status and performance criteria	9
6.1	General information on the interpretation of the real-time PCR	9
6.2	Reliability of the method	
6.2.1	Setup of the interlaboratory study	10
6.2.2	Results of the interlaboratory study samples	10
6.2.3	Qualitative interpretation	10
7	Test report	
Bibliography		13

European foreword

This document (CEN/TS 15634-5:2016) has been prepared by Technical Committee CEN/TC 275 "Food analysis - Horizontal methods", the secretariat of which is held by DIN.

EN 15634, *Foodstuffs* — *Detection of food allergens by molecular biological methods*, is currently composed with the following parts:

- Part 1: General considerations;
- Part 2: Celery (Apium graveolens) Qualitative determination of a specific DNA sequence in cooked sausages by real-time PCR [Technical Specification];
- Part 3: Hazelnut (Corylus avellana) Qualitative detection of a specific DNA sequence in chocolate by real-time PCR [Technical Specification];
- Part 4: Peanut (Arachis hypogaea) Qualitative detection of a specific DNA sequence in chocolate by real-time PCR [Technical Specification];
- Part 5: Mustard (Sinapis alba) and soya (Glycine max) Qualitative detection of a specific DNA sequence in cooked sausages by real-time PCR [Technical Specification].

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to announce this Technical Specification: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

1 Scope

This Technical Specification specifies a procedure for the qualitative detection of species specific DNA from white mustard (*Sinapis alba*) and soya (*Glycine max*) in cooked sausages using singleplex real-time PCR based on the genes MADS-D (mustard) and lectin (soya) [1]. A mustard content of 10 mg/kg or greater and a soya content of 10 mg/kg or greater can be detected with a probability of > 95 %.

2 Principle

The DNA of the sample is extracted and is set to a definite concentration after photometric measurement. A 74 base pair (bp) long sequence of the DNA for the MADS-D protein of *Sinapis alba* (NCBI accession no. Y08626) or a 81 bp long sequence from the soya lectin gene is multiplicated from the sample DNA by real-time PCR. The amplicons formed are detected and verified by annealing a sequence-specific probe and generating a fluorescence signal [2].

3 Reagents

As a rule, analytical grade chemical reagents suitable for molecular biology shall be used. The water used shall be double distilled or equivalent quality. Solutions should be prepared by dissolving the appropriate reagents in water and autoclaving, unless indicated differently.

3.1 DNA extraction with CTAB:

- 3.1.1 Chloroform.
- **3.1.2 Ethanol**, volume fraction $\varphi = 96$ %.
- 3.1.3 Ethylenediaminetetraacetic acid disodium salt (Na₂EDTA).
- 3.1.4 Cetyltrimethylammoniumbromide (CTAB).
- **3.1.5** Hydrochloric acid, mass fraction *w* = 37 %.
- 3.1.6 Isoamyl alcohol.
- 3.1.7 Isopropanol.
- 3.1.8 Proteinase K.
- 3.1.9 Sodium chloride.
- 3.1.10 Sodium hydroxide.
- 3.1.11 Tris(hydroxymethyl)aminomethane (TRIS).

3.1.12 Chloroform isoamyl alcohol mixture.

Mix 24 parts by volume of chloroform (3.1.1) with one part by volume of isoamyl alcohol (3.1.6).

Commercially available and comparable mixtures can be used.

3.1.13 CTAB extraction buffer solution, containing CTAB (mass concentration $\rho = 20$ g/l), sodium chloride (substance concentration c = 1,4 mol/l), TRIS (c = 0,1 mol/l), Na₂-EDTA (c = 0,02 mol/l). Adjust the pH value with hydrochloric acid to 8,0.