BS EN 62817:2015+A1:2017

This is a preview of "BS EN 62817:2015+A1:...". Click here to purchase the full version from the ANSI store.

BSI Standards Publication

Photovoltaic systems - Design qualification of solar trackers (IEC 62817:2014/A1:2017)

National foreword

This British Standard is the UK implementation of EN 62817:2015+A1:2017. It is identical to IEC 62817:2014 including amendment 1:2017. It supersedes BS EN 62817:2015, which is withdrawn.

The text of IEC amendment 1:2017 has been provided in its entirety at the beginning of this document. BSI's policy of providing consolidated content remains unchanged; however, in the interest of expediency, in this instance BSI have chosen to collate the relevant content at the beginning of this document.

The UK participation in its preparation was entrusted to Technical Committee GEL/82, Photovoltaic Energy Systems.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2018 Published by BSI Standards Limited 2018

ISBN 978 0 580 92309 8

ICS 27.160

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 July 2015.

Amendments/corrigenda issued since publication

Date	Text affected
30 April 2018	Implementation of IEC amendment 1:2017 with CENELEC endorsement A1:2017

EN 62017-2015/A1

November 2017

This is a preview of "BS EN 62817:2015+A1:...". Click here to purchase the full version from the ANSI store.

EUROPÄISCHE NORM

ICS 27.160

English Version

Photovoltaic systems - Design qualification of solar trackers (IEC 62817:2014/A1:2017)

Systèmes photovoltaïques - Qualification de conception des suiveurs solaires (IEC 62817:2014/A1:2017) Sonnen-Nachführeinrichtungen für photovoltaische Systeme - Bauarteignung (IEC 62817:2014/A1:2017)

This amendment A1 modifies the European Standard EN 62817:2015; it was approved by CENELEC on 2017-09-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this amendment the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This amendment exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2017 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

European foreword

The text of document 82/1018/CDV, future edition 1 of IEC 62817:2014/A1:2017, prepared by IEC/TC 82 "Solar photovoltaic energy systems" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 62817:2015/A1:2017.

The following dates are fixed:

document have to be withdrawn

•	latest date by which this document has to be implemented at national level by publication of an identical national standard or by endorsement	(dop)	2018-06-01
•	latest date by which the national standards conflicting with this	(dow)	2020-09-01

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 62817:2014/A1:2017 was approved by CENELEC as a European Standard without any modification.

FOREWORD

This amendment has been prepared by IEC technical committee 82: Solar photovoltaic energy systems.

The text of this amendment is based on the following documents:

CDV	Report on voting
82/1018/CDV	82/1097/RVC

Full information on the voting for the approval of this amendment can be found in the report on voting indicated in the above table.

The committee has decided that the contents of this amendment and the base publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

7.3.3 Calibration of pointing error measurement tool

Add the following to 7.3.3

A procedure for calibration of pointing error measurement tool does not exist in this or any other IEC document. It is recommended that the pointing error measurement tool be calibrated at least once per year per the following:

Outdoor tracker pointing error sensor calibration procedure:

Apparatus and measurement requirements: Device for mounting and orienting the pointing error sensor (typically a solar tracker but other devices suffice), data acquisition system capable of measuring outputs of the pointing error sensor, recording the timestamp that is accurate to the true time within 2 s, visual verification of no clouds impinging the view of the sun during the entire measurement period (including thin cirrus clouds) or verification during the entire measurement period that the DNI varies no more than 2 % from maximum to minimum values recorded.

- a) Determine the measurement range for which the calibration is desired. The maximum measurement range is the field of view of the sensor under calibration but a smaller measurement range can be used as applicable to the calibration.
- b) Assume that ±1° is the measurement range for the calibration. Mount the sensor on the alignment device and adjust the position of the device so that the sensor is pointing approximately 1° (or other determined measurement range) ahead of the sun's movement path in both axes of orientation. If the alignment device is a solar tracker, this means aligning the sensor with the solar tracker's mounting plane and then moving the solar

tracker 1° ahead of the sun's position (in both axes). Fix the position of the alignment device (this means stopping movement of a solar tracker).

- c) Start the data acquisition, recording both the timestamp and outputs of the pointing error sensor at a 10 s or shorter interval. Record data for the time period it takes for the sun to walk through the desired measurement range for each axis under calibration (for this example this is 2° of sun movement for the \pm 1° measurement range). The time necessary for the sun to move the desired range depends on the latitude/longitude of the measurement location, the day of the year, and the time of day. Input this information into the Solpos or SPA algorithms for determining sun location during the test period (freely available at http://www.nrel.gov/midc/srrl_bms/).
- d) After completion of the data acquisition period, using the timestamp from the dataset, merge sun position data from the Solpos or SPA algorithms for both solar zenith and solar azimuth angle into the measured data set. Determine the solar zenith and azimuth positions for which the outputs of each axis of the pointing sensor correspond to zero pointing error (For most sensor designs this corresponds to a zero voltage output signal). Data points can be interpolated between to find the zero pointing error position. These azimuth and zenith positions should be recorded as the "fixed azimuth" and "fixed zenith" pointing position of the sensor for the calibration period.
- e) Calculate the true azimuth and zenith pointing error for every data point in the data set as follows:

True Zenith Pointing Error = Zenith_{Solpos} – Zenith_{FixedPosition}

True Azimuth Pointing Error = (Azimuth_{Solpos} – Azimuth_{FixedPosition}). Sine(Zenith_{Solpos})

Note that the *True Azimuth Pointing Error* is an approximation which is only valid as $(Azimuth_{Solpos} - Azimuth_{FixedPosition})$ approaches 0. For cases where values of $(Azimuth_{Solpos} - Azimuth_{FixedPosition})$ are less than 5 and where $Zenith_{Solpos}$ is more than 3, the error of the approximation is less than 0,0001°. Generally speaking achieving the conditions for such low error is achievable.

f) Plot the *True Zenith Pointing Error* against the corresponding sensor output for the zenith axis. The sensor manufacturer shall establish the details of the final output signal to be used for the calibration plots as some sensors have a single signal while others that have multiple signals that together are used for determining the measured pointing error. Plot the *True Azimuth Pointing Error* against the corresponding sensor output for the azimuth axis. For both plots apply a linear fit to the data set. Report the fit coefficients and the standard deviation of the slope. The slope is the calibration factor between the output signal and the pointing error in degrees. Note that the calibration procedure presented here is a relative measurement of the sensor's ability to represent a change in pointing error with a change in its output and does not prove absolute pointing error. Also, the calibration procedure is described in terms of azimuth and zenith as this relates to the Solpos and SPA algorithms but the calibration coefficients apply to the two generic axes of the sensor that can be mounted on various tracker configurations.

8.4.4 Torsional stiffness, mechanical drift, drive torque, and backlash testing

8.4.4.2 Procedure, paragraph preceding Option a)

In this paragraph, replace the last three sentences with the following text:

Assuming the tracker has a horizontal stow position, the stow moment coefficient derived from third-party wind tunnel or field test data shall be for the tracker in a position 3° from horizontal. This deviation from horizontal accounts for potential deviations from stow to the true horizontal position and for minor variations in ground slope in otherwise flat areas. Wind tunnel testing shall demonstrate establishment of a representative atmospheric boundary layer which includes turbulence that accounts for the normal deviations in wind flow from purely horizontal. Wind tunnel data shall be collected at the 3° tilt position, unless the said tracker cannot achieve this position. In such an event, the wind tunnel testing and derivation of the moment coefficient shall be performed at the nearest position to horizontal that the tracker can achieve.

NOTE The tilt position for extreme moment testing was changed from 10° to 3°, as the original 10° was deemed overly conservative. Appropriate wind tunnel atmospheric boundary layers already account for deviations from horizontal wind flows which the 10° was originally claimed to take into account.

8.5 Environmental testing

8.5.2 Procedure

Replace the existing item a) with the following new item a):

a) Temperature cycle (no humidity added to the air) where inclusion of dust is recommended as follows but is not required: at least 40 cycles and 480 h shall be completed. The maximum temperature shall be 55 °C and the minimum temperature shall be -20 °C. If the operational temperature range specified in Table 1 (see 6.12.1) indicates the tracker can operate outside -20 °C to 55 °C, then the temperature range of this test shall be expanded to coincide with the specified values. In other words, -20 °C to 55 °C can be considered the minimum test conditions, but more extreme values shall be applied to align with the specification sheet. The cycle shall dwell for at least 5 min, but not more than 15 min, at ± 3 °C of the maximum and minimum temperatures per average surface temperature measurements at three distinct points on the drive train. The temperature measurement points shall be documented and have justification supporting that surface measurements are on an object with significant thermal mass in relation to the system under test. For the first 240 h, dust should be circulated around the dynamic mechanical interfaces of the drive train. When dust is included in the test, A4 dust per ISO 1203-1 shall be used (contains distribution of both fine and coarse particles). A temporary structure can be used to contain the region of circulating dust, as opposed to circulating dust in the entire environmental chamber. A blower or other mechanism shall be used to ensure that dust is circulating in the air. Because dust will settle and collect on surfaces, it may be necessary to periodically add additional dust to the blower system through the course of the 240 h. Video, photographs, or other methods shall document that dust is visible in the air at 10 min intervals throughout the test. An alternate option is to complete the 240 h of dust testing at a steady temperature after the onset of the 480 h of temperature cycling. The combination of the dust and temperature cycling is recommended because it shortens test time and because temperature cycles can cause expansion and contraction of seals and other parts that may enhance the ability for dust to penetrate into places that can ultimately lead to failure. The alternate option is provided, because facilities may not be readily available that can combine both tests, or such a test could be prohibitively expensive. The test report shall clearly indicate if dust testing was or was not completed.

EN 62017

March 2015

This is a preview of "BS EN 62817:2015+A1:...". Click here to purchase the full version from the ANSI store.

EUROPÄISCHE NORM

ICS 27.160

English Version

Photovoltaic systems - Design qualification of solar trackers (IEC 62817:2014)

Systèmes photovoltaïques - Qualification de conception des suiveurs solaires (IEC 62817:2014) Sonnen-Nachführeinrichtungen für photovoltaische Systeme - Bauarteignung (IEC 62817:2014)

This European Standard was approved by CENELEC on 2014-09-29. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2015 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

The text of document 82/853/FDIS, future edition 1 of IEC 62817, prepared by IEC/TC 82 "Solar photovoltaic energy systems" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 62817:2015.

The following dates are fixed:

•	latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement	(dop)	2015-09-13
•	latest date by which the national standards conflicting with the document have to be withdrawn	(dow)	2017-09-29

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 62817:2014 was approved by CENELEC as a European Standard without any modification.

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. NOTE 1 When an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu.

Publication	<u>Year</u>	<u>Title</u>	<u>EN/HD</u>	<u>Year</u>
IEC 60068-2-6	-	Environmental testing Part 2-6: Tests -	EN 60068-2-6	-
IEC 60068-2-21	-	Environmental testing Part 2-21: Tests - Test U: Robustness of terminations and integral mounting devices	EN 60068-2-21	-
IEC 60068-2-27	-	Environmental testing Part 2-27: Tests - Test Ea and guidance: Shock	EN 60068-2-27	-
IEC 60068-2-75	-	Environmental testing Part 2-75: Tests - Test Eh: Hammer tests	EN 60068-2-75	-
IEC 60529	-	Degrees of protection provided by enclosures (IP Code)	-	-
IEC 60904-3	2008	Photovoltaic devices Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data	EN 60904-3	2008
IEC 61000-4-5	2005	Electromagnetic compatibility (EMC) Par 4-5: Testing and measurement techniques - Surge immunity test	tEN 61000-4-5	2006
IEC 62262	2002	Degrees of protection provided by enclosures for electrical equipment against external mechanical impacts (IK code)	EN 62262	2002
ISO 12103-1	-	Road vehicles Test dust for filter evaluation - Part 1: Arizona test dust	-	-
ISO/IEC 17025	-	General requirements for the competence of testing and calibration laboratories	EN ISO/IEC 17025	-

CONTENTS

FOREWORD					
1 Sco	1 Scope and object				
2 Norr	native references	8			
3 Terr	ns and definitions	9			
4 Spe	cifications for solar trackers for PV applications	9			
5 Rep	ort	12			
6 Trac	ker definitions and taxonomy	13			
61	General	13			
6.2	Pavload types	13			
6.2.	1 Standard photovoltaic (PV) module trackers	13			
6.2.2	2 Concentrator photovoltaic (CPV) module trackers	13			
6.3	Rotational axes	14			
6.3.	1 General	14			
6.3.2	2 Single-axis trackers	14			
6.3.3	3 Dual-axis trackers	15			
6.4	Actuation and control	17			
6.4.	1 Architecture	17			
6.4.2	2 Drive train	17			
6.4.3	3 Drive types	17			
6.4.4	4 Drive train torque	18			
6.5	Types of tracker control	18			
6.5.	1 Passive control	18			
6.5.2	2 Active control	18			
6.5.3	3 Backtracking	19			
6.6	Structural characteristics	19			
6.6.	1 Vertical supports	19			
6.6.2	2 Foundation types	20			
6.6.3	3 Tracker positions	20			
6.6.4	4 Stow time	21			
6.7	Energy consumption	21			
6.7.	1 Daily energy consumption	21			
6.7.2	2 Stow energy consumption	21			
6.8	External elements and interfaces	21			
6.8.	Foundation	Z1			
0.0.	2 Foundation Interface				
0.0.	5 Payload	∠۱ دد			
6.8	 Fayload mechanical interface 	ZZ 22			
6.8.1	6 Payload electrical interface	22			
6.8	7 Grounding interface	22			
6.8.	8 Installation effort	22			
6.8.9	9 Control interface	22			
6.9	Internal tolerances	23			
6.9.1	1 Primary-axis tolerance	23			
6.9.2	2 Secondary axis tolerance	23			
6.9.3	3 Backlash	23			

BS FN 62817-2015

This is a preview of "BS EN 62817:2015+A1:...". Click here to purchase the full version from the ANSI store.

	6.9.4	Stiffness	23
	6.10 Tra	cker system elements	24
	6.10.1	Mechanical structure	24
	6.10.2	Tracker controller	24
	6.10.3	Sensors	24
	6.11 Reli	iability terminology	24
	6.11.1	General	24
	6.11.2	Mean time between failures (MTBF)	24
	6.11.3	Mean time between critical failures (MTBCF)	25
	6.11.4	Mean time to repair (MTTR)	25
	6.12 Env	rironmental conditions	25
	6.12.1	Operating temperature range	25
	6.12.2	Survival temperature range	25
	6.12.3	Wind speed	25
	6.12.4	Maximum wind during operation	26
	6.12.5	Maximum wind during stow	26
	6.12.6	Snow load	26
7	Tracker a	accuracy characterization	26
	7.1 Ove	erview	26
	7.2 Poir	nting error (instantaneous)	26
	7.3 Mea	asurement	27
	7.3.1	Overview	27
	7.3.2	Example of experimental method to measure pointing error	27
	7.3.3	Calibration of pointing error measurement tool	28
	7.4 Cal	culation of tracker accuracy	28
	7.4.1	Overview	28
	7.4.2	Data collection	28
	7.4.3	Data binning by wind speed	29
	7.4.4	Data filtering	30
	7.4.5	Data quantity	30
	7.4.6	Accuracy calculations	30
8	Tracker to	est procedures	31
	8.1 Visu	ual inspection	31
	8.1.1	Purpose	31
	8.1.2	Procedure	31
	8.1.3	Requirements	31
	8.2 Fun	ctional validation tests	32
	8.2.1	Purpose	32
	8.2.2	Tracking limits verification	32
	8.2.3	Hard limit switch operation	32
	8.2.4	Automatic sun tracking after power outage and feedback sensor	
		shadowing	
	8.2.5	Manual operation	
	8.2.6	Emergency stop	
	8.2.7	Maintenance mode	
	8.2.8	Operational temperature range	
	8.2.9	wind stow	
	8.3 Per	Tormance tests	
	8.3.1	Purpose	33

8.3.2	Daily energy and peak power consumption	33
8.3.3	Stow time and stow energy and power consumption	34
8.4 Me	chanical testing	34
8.4.1	Purpose	34
8.4.2	Control/drive train pointing repeatability test	35
8.4.3	Deflection under static load test	36
8.4.4	Torsional stiffness, mechanical drift, drive torque, and backlash testing	38
8.4.5	Moment testing under extreme wind loading	41
8.5 En	vironmental testing	43
8.5.1	Purpose	43
8.5.2	Procedure	43
8.5.3	Requirements	45
8.6 Ac	celerated mechanical cycling	46
8.6.1	Purpose	46
8.6.2	Procedure	46
8.6.3	Requirements	48
9 Design o	ualification testing specific to tracker electronic equipment	48
9.1 Ge	neral purpose	48
9.2 Se	quential testing for electronic components	48
9.2.1	General	48
9.2.2	Visual inspection of electronic components	49
9.2.3	Functioning test	50
9.2.4	Protection against dust, water, and foreign bodies (IP code)	51
9.2.5	Protection against mechanical impacts (IK code)	51
9.2.6	Robustness of terminals test	52
9.2.7	Surge immunity test	53
9.2.8	Shipping vibration test	53
9.2.9	Shock test	54
9.2.10	UV test	54
9.2.11	Thermal cycling test	55
9.2.12	Humidity-freeze test	56
9.2.13	Damp heat	57
10 Addition	al optional accuracy calculations	57
10.1 Ty	pical tracking accuracy range	57
10.2 Tra	acking error histogram	57
10.3 Pe	rcent of available irradiance as a function of pointing error	58
Figure 1 – Co	privention for elevation angle	16
Figure 2 – Illu	ustration of primary-axis tolerance for VPDAT	23
- Fiaure 3 – Ge	eneral illustration of pointing error	27
	ample of experimental method to measure pointing error	27
$\Box_{\text{source}} = \Box_{\text{source}}$	ample of experimental method to measure pointing enormalisment leasting for structural definitions	21
-igure 5 – Ex	ample measurement locations for structural deflection	31
Figure 6 – Lo	ad configurations while the payload is in the horizontal position	37
Figure 7 – Lo	ad configuration when the payload is in the vertical position	37
Figure 8 – Mo	oment load applied to an elevation axis	39
- Figure 9 – Ar	gular displacement versus applied torque to axis of rotation	39

BS EN 62817-2015

Table 1 – Tracker specification template	10
Table 2 – Alternate tracking-accuracy reporting template	31

BS EN 62817-2015

This is a preview of "BS EN 62817:2015+A1:...". Click here to purchase the full version from the ANSI store.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PHOTOVOLTAIC SYSTEMS – DESIGN QUALIFICATION OF SOLAR TRACKERS

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62817 has been prepared by IEC technical committee 82: Solar photovoltaic energy systems.

The text of this design qualification standard is based on the following documents:

FDIS	Report on voting
82/853/FDIS	82/877/RVD

Full information on the voting for the approval of this international standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

BS EN 62817 2015

This is a preview of "BS EN 62817:2015+A1:...". Click here to purchase the full version from the ANSI store.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

PHOTOVOLTAIC SYSTEMS – DESIGN QUALIFICATION OF SOLAR TRACKERS

1 Scope and object

This International Standard is a design qualification standard applicable to solar trackers for photovoltaic systems, but may be used for trackers in other solar applications. The standard defines test procedures for both key components and for the complete tracker system. In some cases, test procedures describe methods to measure and/or calculate parameters to be reported in the defined tracker specification sheet. In other cases, the test procedure results in a pass/fail criterion.

The objective of this design qualification standard is twofold.

First, this standard ensures the user of the said tracker that parameters reported in the specification sheet were measured by consistent and accepted industry procedures. This provides customers with a sound basis for comparing and selecting a tracker appropriate to their specific needs. This standard provides industry-wide definitions and parameters for solar trackers. Each vendor can design, build, and specify the functionality and accuracy with uniform definition. This allows consistency in specifying the requirements for purchasing, comparing the products from different vendors, and verifying the quality of the products.

Second, the tests with pass/fail criteria are engineered with the purpose of separating tracker designs that are likely to have early failures from those designs that are sound and suitable for use as specified by the manufacturer. Mechanical and environmental testing in this standard is designed to gauge the tracker's ability to perform under varying operating conditions, as well as to survive extreme conditions. Mechanical testing is not intended to certify structural and foundational designs, because this type of certification is specific to local jurisdictions, soil types, and other local requirements.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60068-2-6, Environmental testing – Part 2-6: Tests – Test Fc: Vibration (sinusoidal)

IEC 60068-2-21, Environmental testing – Part 2-21: Tests – Test U: Robustness of terminations and integral mounting devices

IEC 60068-2-27, Environmental testing – Part 2-27: Tests – Test Ea and guidance: Shock

IEC 60068-2-75, Environmental testing – Part 2-75: Tests – Test Eh: Hammer tests

IEC 60529, Degrees of protection provided by enclosures (IP Code)

IEC 60904-3:2008, Photovoltaic devices – Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data

IEC 61000-4-5:2005, *Electromagnetic compatibility (EMC) – Part 4-5: Testing and measurement techniques – Surge immunity test*