PD IEC TS 62607-6-3:2020

This is a preview of "PD IEC TS 62607-6-3:...". Click here to purchase the full version from the ANSI store.

BSI Standards Publication

Nanomanufacturing — Key control characteristics

Part 6-3: Graphene-based material — Domain size: substrate oxidation

National foreword

This Published Document is the UK implementation of IEC TS 62607-6-3:2020.

The UK participation in its preparation was entrusted to Technical Committee NTI/1, Nanotechnologies.

A list of organizations represented on this committee can be obtained on request to its committee manager.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2020 Published by BSI Standards Limited 2020

ISBN 978 0 580 97333 8

ICS 07.120; 07.030

Compliance with a British Standard cannot confer immunity from legal obligations.

This Published Document was published under the authority of the Standards Policy and Strategy Committee on 30 November 2020.

Amendments/corrigenda issued since publication

Date Text affected

Edition 1.0 2020-10

TECHNICAL SPECIFICATION

R

Nanomanufacturing – Key control characteristics – Part 6-3: Graphene-based material – Domain size: substrate oxidation

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 07.030, ICS 07.120

ISBN 978-2-8322-8939-6 0

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

INTRODUCTION 6 1 Scope 7 2 Normative references 7 3 Terms and definitions 7 3 General terms 8 3.2 Graphene related terms 8 3.3 Key control characteristics measured in accordance with this document 9 4 General 9 4.1 Measurement principle 9 4.2 Sample preparation method 10 4.3 Measurement system 11 4.4 Description of measurement equipment/apparatus 12 4.5 Calibration standards 12 5.4 Galibration of measurement equipment 12 5.1 Calibration of measurement equipment 12 5.2 Detailed protocol of the measurement procedure 12 5.2.1 General 13 6.2 Product/sample identification 13 6.3 Test conditions 13 6.4 Measurement specific information 14 Annex A (informative) Worked example 15 A.1 Ex	FOREWORD	4
1 Scope 7 2 Normative references 7 3 Terms and definitions 7 3 I deneral terms 8 3.2 Graphene related terms 8 3.3 Key control characteristics measured in accordance with this document 9 4 General 9 4.1 Measurement principle 9 4.2 Sample preparation method 10 4.3 Measurement system 11 4.4 Description of measurement equipment/apparatus 12 4.6 Ambient conditions during measurement 12 5.1 Calibration of measurement procedure 12 5.2 Detailed protocol of the measurement procedure 12 5.2.1 General 12 5.2.2 Example 13 6.1 General 13 6	INTRODUCTION	6
2 Normative references 7 3 Terms and definitions 7 3.1 General terms 8 3.2 Graphene related terms 8 3.3 Key control characteristics measured in accordance with this document 9 4 General 9 4.1 Measurement principle 9 4.2 Sample preparation method 10 4.3 Measurement system 11 4.4 Description of measurement equipment/apparatus 12 4.5 Calibration standards 12 4.6 Ambient conditions during measurement. 12 5 Measurement procedure 12 5.1 Calibration standards 12 5.2 Detailed protocol of the measurement procedure 12 5.2.1 General 12 5.2.2 Example 13 6.1 General 13 6.2 Product/sample identification 13 6.3 Test conditions 13 6.4 Measurement specific information 14 A.5	1 Scope	7
3 Terms and definitions 7 3.1 General terms 8 3.2 Graphen related terms 8 3.3 Key control characteristics measured in accordance with this document 9 4 General 9 4.1 Measurement principle 9 4.2 Sample preparation method 10 4.3 Measurement system 11 4.4 Description of measurement equipment/apparatus 12 4.5 Calibration standards 12 4.6 Ambient conditions during measurement. 12 5.1 Calibration of measurement equipment 12 5.2 Detailed protocol of the measurement procedure 12 5.2.1 General 13 6.1 General 13 6.2 Product/sample identification 13 6.3 Test conditions 13 6.4 Measurement specific information 14 6.5 Test results 14 Annex A (informative) Worked example 15 A.1 Example 15 A.2	2 Normative references	7
3.1 General terms 8 3.2 Graphene related terms 8 3.3 Key control characteristics measured in accordance with this document 9 4 General 9 4.1 Measurement principle 9 4.2 Sample preparation method 10 4.3 Measurement system 11 4.4 Description of measurement equipment/apparatus 12 4.6 Ambient conditions during measurement 12 5.1 Calibration standards 12 5.2 Detailed protocol of the measurement procedure 12 5.2 Detailed protocol of the measurement procedure 12 5.2.1 General 12 5.2.2 Detailed protocol of the measurement procedure 13 6.1 General 13 6.2 Product/sample identification 13 6.3 Test conditions 13 6.4 Measurement specific information 14 Annex A (informative) Worked example 15 15 A.1 Example 15 A.2 Sampling p	3 Terms and definitions	7
3.2 Graphene related terms 8 3.3 Key control characteristics measured in accordance with this document 9 4 General 9 4.1 Measurement principle 9 4.2 Sample preparation method 10 4.3 Measurement system 11 4.4 Description of measurement equipment/apparatus 12 4.5 Calibration standards 12 4.6 Ambient conditions during measurement. 12 5.1 Calibration of measurement equipment 12 5.2 Detailed protocol of the measurement procedure 12 5.2.1 General 12 5.2.2 Example 13 6 Results to be reported 13 6.1 General 13 6.2 Product/sample identification 13 6.3 Test results 14 Annex A (informative) Worked example 15 A.1 Example 15 A.2 Sampling plan A.3 A.3 Format of the test report 18 A.2	3.1 General terms	
3.3 Key control characteristics measured in accordance with this document 9 4 General 9 4.1 Measurement principle 9 4.2 Sample preparation method 10 4.3 Measurement system 11 4.4 Description of measurement equipment/apparatus 12 4.5 Calibration standards 12 4.6 Ambient conditions during measurement. 12 5.1 Calibration of measurement equipment 12 5.1 Calibration of measurement procedure 12 5.2 Detailed protocol of the measurement procedure 12 5.2.1 General 13 6 Results to be reported 13 6.1 General 13 6.2 Product/sample identification 13 6.3 Test conditions 13 6.4 Measurement specific information 14 6.5 Test conditions 14 A.6 Amex A (informative) Worked example 15 A.1 Example 16 A.2 Sampling plan	3.2 Graphene related terms	8
4 General 9 4.1 Measurement principle 9 4.2 Sample preparation method 10 4.3 Measurement system 11 4.4 Description of measurement equipment/apparatus 12 4.5 Calibration standards 12 4.6 Ambient conditions during measurement 12 5.1 Calibration of measurement equipment 12 5.2 Detailed protocol of the measurement procedure 12 5.2.1 General 12 5.2.2 Example 13 6 Results to be reported 13 6.1 General 13 6.2 Product/sample identification 13 6.3 Test conditions 13 6.4 Measurement specific information 14 Annex A (informative) Worked example 15 A.1 Example 15 A.2 Sampling plan 18 A.3 Format of the test report 18 A.3 Format of the graphene domains on Cu foil. 10 Figure 1 –	3.3 Key control characteristics measured in accordance with this document	9
4.1 Measurement principle	4 General	9
4.2 Sample preparation method 10 4.3 Measurement system 11 4.4 Description of measurement equipment/apparatus 12 4.5 Calibration standards 12 4.6 Ambient conditions during measurement 12 5.1 Calibration of measurement equipment 12 5.1 Calibration of measurement equipment 12 5.2 Detailed protocol of the measurement procedure 12 5.2.1 General 12 5.2.2 Example 13 6 Results to be reported 13 6.1 General 13 6.2 Product/sample identification 13 6.3 Test conditions 13 6.4 Measurement specific information 14 Annex A (informative) Worked example 15 A.1 A.1 Example 15 A.2 Sampling plan A.3 Format of the test report 19 Annex B (informative) Alternative methods for evaluating graphene domains and defects Figure 1 – Applications of graphene 6 Figure 2 – Schematics for oxidation of copper fo	4.1 Measurement principle	9
4.3 Measurement system 11 4.4 Description of measurement equipment/apparatus 12 4.5 Calibration standards 12 4.6 Ambient conditions during measurement 12 5 Measurement procedure 12 5.1 Calibration of measurement equipment 12 5.2 Detailed protocol of the measurement procedure 12 5.2.1 General 12 5.2.2 Example 13 6.1 General 13 6.2 Product/sample identification 13 6.3 Test conditions 13 6.4 Measurement specific information 14 6.5 Test results 14 Annex A (informative) Worked example 15 15 A.1 Example 15 A.2 Sampling plan 18 A.3 Format of the test report 19 Annex B (informative) Alternative methods for evaluating graphene domains and defects 21 Figure 1 – Applications of graphene 6 6 Figure 2 – Schematics for oxidation of copper foil through th	4.2 Sample preparation method	10
4.4Description of measurement equipment/apparatus124.5Calibration standards124.6Ambient conditions during measurement125Measurement procedure125.1Calibration of measurement equipment125.2Detailed protocol of the measurement procedure125.2.1General125.2.2Example136Results to be reported136.1General136.2Product/sample identification136.3Test conditions136.4Measurement specific information146.5Test results14Annex A (informative) Worked example15A.1Example15A.2Sampling plan18A.3Format of the test report19Annex B (informative) Alternative methods for evaluating graphene domains and defects21Bibliography22Figure 1 – Applications of graphene6Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries10Figure 4 – Schematic view of oxidation system11Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size13Figure 6 – Example of domain size analysis13Figure 6 – Example of domain size analysis13Figure 6 – Stample of graphene/Cu after oxidation at the points as specified in15Figure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in	4.3 Measurement system	11
4.5 Calibration standards 12 4.6 Ambient conditions during measurement 12 5 Measurement procedure 12 5.1 Calibration of measurement equipment 12 5.2 Detailed protocol of the measurement procedure 12 5.2.1 General 12 5.2.2 Example 13 6 Results to be reported 13 6.1 General 13 6.2 Product/sample identification 13 6.3 Test conditions 13 6.4 Measurement specific information 14 Annex A (informative) Worked example 15 A.1 Example 15 A.2 Sampling plan 18 A.3 Format of the test report 19 Annex B (informative) Alternative methods for evaluating graphene domains and defects 21 Bibliography 22 22 Figure 1 – Applications of graphene 6 11 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries 10 Figure 4 – Schematic view of o	4.4 Description of measurement equipment/apparatus	12
4.6 Ambient conditions during measurement 12 5 Measurement procedure 12 5.1 Calibration of measurement equipment 12 5.2 Detailed protocol of the measurement procedure 12 5.2.1 General 12 5.2.2 Example 13 6 Results to be reported 13 6.1 General 13 6.2 Product/sample identification 13 6.3 Test conditions 13 6.4 Measurement specific information 14 Annex A (informative) Worked example 15 A.1 Example 15 A.2 Sampling plan 18 A.3 Format of the test report 19 Annex B (informative) Alternative methods for evaluating graphene domains and defects 21 Bibliography 22 22 Figure 1 – Applications of graphene 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries 10 Figure 3 – Optical image of the graphene domains on Cu foil 11 Figure 4 – Schematic view of oxidation system <t< td=""><td>4.5 Calibration standards</td><td>12</td></t<>	4.5 Calibration standards	12
5 Measurement procedure 12 5.1 Calibration of measurement equipment 12 5.2 Detailed protocol of the measurement procedure 12 5.2.1 General 12 5.2.2 Example 13 6 Results to be reported 13 6.1 General 13 6.2 Product/sample identification 13 6.3 Test conditions 13 6.4 Measurement specific information 14 6.5 Test results 14 Annex A (informative) Worked example 15 A.1 Example 15 A.2 Sampling plan 18 A.3 Format of the test report 19 Annex B (informative) Alternative methods for evaluating graphene domains and defects glibliography 22 Figure 1 – Applications of graphene 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries 10 Figure 3 – Optical image of the graphene domains on Cu foil 11 Figure 4 – Schematic view of oxidation system 11	4.6 Ambient conditions during measurement	12
5.1 Calibration of measurement equipment 12 5.2 Detailed protocol of the measurement procedure 12 5.2.1 General 12 5.2.2 Example 13 6 Results to be reported 13 6.1 General 13 6.2 Product/sample identification 13 6.3 Test conditions 13 6.4 Measurement specific information 14 6.5 Test results 14 Annex A (informative) Worked example 15 A.1 Example 15 A.2 Sampling plan 18 A.3 Format of the test report 19 Annex B (informative) Alternative methods for evaluating graphene domains and defects 21 Bibliography 22 Figure 1 – Applications of graphene 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries 10 Figure 3 – Optical image of the graphene domains on Cu foil 11 Figure 4 – Schematic view of oxidation system 11 Figure 5 – Optical images of graphene/Cu after oxidation and anal	5 Measurement procedure	12
5.2 Detailed protocol of the measurement procedure 12 5.2.1 General 12 5.2.2 Example 13 6 Results to be reported 13 6.1 General 13 6.2 Product/sample identification 13 6.3 Test conditions 13 6.4 Measurement specific information 14 6.5 Test results 14 Annex A (informative) Worked example 15 A.1 Example 15 A.2 Sampling plan 18 A.3 Format of the test report 19 Annex B (informative) Alternative methods for evaluating graphene domains and defects 21 Bibliography 22 22 Figure 1 – Applications of graphene 6 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries 10 Figure 3 – Optical image of the graphene domains on Cu foil 11 Figure 4 – Schematic view of oxidation system 11 Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size 13 Figur	5.1 Calibration of measurement equipment	12
5.2.1General125.2.2Example136Results to be reported136.1General136.2Product/sample identification136.3Test conditions136.4Measurement specific information146.5Test results14Annex A (informative) Worked example15A.1Example15A.2Sampling plan18A.3Format of the test report19Annex B (informative) Alternative methods for evaluating graphene domains and defects21Bibliography22Figure 1 – Applications of graphene6Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries10Figure 3 – Optical image of the graphene domains on Cu foil11Figure 4 – Schematic view of oxidation system11Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size13Figure 6 – Example of domain size analysis13Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at101050 °C by CVD with CH415Figure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in	5.2 Detailed protocol of the measurement procedure	12
5.2.2 Example 13 6 Results to be reported 13 6.1 General 13 6.2 Product/sample identification 13 6.3 Test conditions 13 6.4 Measurement specific information 14 6.5 Test results 14 Annex A (informative) Worked example 15 A.1 Example 15 A.2 Sampling plan 18 A.3 Format of the test report 19 Annex B (informative) Alternative methods for evaluating graphene domains and defects Bibliography 22 Figure 1 – Applications of graphene 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries 10 Figure 3 – Optical image of the graphene domains on Cu foil 11 Figure 4 – Schematic view of oxidation system 11 Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size 12 Figure 6 – Example of domain size analysis 13 Figure A 1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 1050 °C by CVD with CH ₄ To 50 °C	5.2.1 General	12
6 Results to be reported 13 6.1 General 13 6.2 Product/sample identification 13 6.3 Test conditions 13 6.4 Measurement specific information 14 6.5 Test results 14 Annex A (informative) Worked example 15 A.1 Example 15 A.2 Sampling plan 18 A.3 Format of the test report 19 Annex B (informative) Alternative methods for evaluating graphene domains and defects 21 Bibliography 22 22 Figure 1 – Applications of graphene 6 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries 10 Figure 3 – Optical image of the graphene domains on Cu foil 11 Figure 4 – Schematic view of oxidation system 11 Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size 13 Figure 6 – Example of domain size analysis 13 Figure 6 – Example of domain size analysis 13 Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 1	5.2.2 Example	13
6.1 General. 13 6.2 Product/sample identification 13 6.3 Test conditions 13 6.4 Measurement specific information 14 6.5 Test results 14 Annex A (informative) Worked example 15 A.1 Example 15 A.2 Sampling plan 18 A.3 Format of the test report 19 Annex B (informative) Alternative methods for evaluating graphene domains and defects 21 Bibliography 22 22 Figure 1 – Applications of graphene 6 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries 10 Figure 3 – Optical image of the graphene domains on Cu foil 11 Figure 4 – Schematic view of oxidation system 11 Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size 13 Figure 6 – Example of domain size analysis 13 Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 1050 °C by CVD with CH ₄ 15 Figure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in 15	6 Results to be reported	13
6.2 Product/sample identification 13 6.3 Test conditions 13 6.4 Measurement specific information 14 6.5 Test results 14 6.5 Test results 14 Annex A (informative) Worked example 15 A.1 Example 15 A.2 Sampling plan 18 A.3 Format of the test report 19 Annex B (informative) Alternative methods for evaluating graphene domains and defects 21 Bibliography 22 Figure 1 – Applications of graphene 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries 10 Figure 3 – Optical image of the graphene domains on Cu foil 11 Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size distribution 12 Figure 6 – Example of domain size analysis 13 Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 1 050 °C by CVD with CH4 15 Figure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in 15	6.1 General	13
6.3 Test conditions 13 6.4 Measurement specific information 14 6.5 Test results 14 Annex A (informative) Worked example 15 A.1 Example 15 A.2 Sampling plan 18 A.3 Format of the test report 19 Annex B (informative) Alternative methods for evaluating graphene domains and defects 21 Bibliography 22 Figure 1 – Applications of graphene 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries 10 Figure 3 – Optical image of the graphene domains on Cu foil 11 Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size distribution 12 Figure 6 – Example of domain size analysis 13 Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 1050 °C by CVD with CH ₄ 15 Figure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in 15	6.2 Product/sample identification	13
6.4 Measurement specific information 14 6.5 Test results 14 Annex A (informative) Worked example 15 A.1 Example 15 A.2 Sampling plan 18 A.3 Format of the test report 19 Annex B (informative) Alternative methods for evaluating graphene domains and defects 21 Bibliography 22 Figure 1 – Applications of graphene 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries 10 Figure 3 – Optical image of the graphene domains on Cu foil 11 Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size 12 Figure 6 – Example of domain size analysis 13 Figure 6 – Example of domain size analysis 13 Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 1050 °C by CVD with CH4 15 Figure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in 15	6.3 Test conditions	13
6.5 Test results 14 Annex A (informative) Worked example 15 A.1 Example 15 A.2 Sampling plan 18 A.3 Format of the test report 19 Annex B (informative) Alternative methods for evaluating graphene domains and defects 21 Bibliography 22 Figure 1 – Applications of graphene 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries 10 Figure 3 – Optical image of the graphene domains on Cu foil 11 Figure 4 – Schematic view of oxidation system 11 Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size 12 Figure 6 – Example of domain size analysis 13 Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 1050 °C by CVD with CH ₄ 15 Figure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in	6.4 Measurement specific information	14
Annex A (informative) Worked example 15 A.1 Example. A.2 Sampling plan A.3 Format of the test report Annex B (informative) Alternative methods for evaluating graphene domains and defects. 19 Annex B (informative) Alternative methods for evaluating graphene domains and defects. 21 Bibliography. 22 Figure 1 – Applications of graphene. 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries. 10 Figure 3 – Optical image of the graphene domains on Cu foil. 11 Figure 4 – Schematic view of oxidation system 11 Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size 12 Figure 6 – Example of domain size analysis 13 Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 1050 °C by CVD with CH ₄ 1050 °C by CVD with CH ₄ 15 Figure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in 15	6.5 Test results	14
A.1 Example 15 A.2 Sampling plan 18 A.3 Format of the test report 19 Annex B (informative) Alternative methods for evaluating graphene domains and defects 21 Bibliography 22 Figure 1 – Applications of graphene 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries 10 Figure 3 – Optical image of the graphene domains on Cu foil 11 Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size 12 Figure 6 – Example of domain size analysis 13 Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 1050 °C by CVD with CH ₄ Tigure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in 15	Annex A (informative) Worked example	15
A.2 Sampling plan 18 A.3 Format of the test report 19 Annex B (informative) Alternative methods for evaluating graphene domains and defects 21 Bibliography 22 Figure 1 – Applications of graphene 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries 10 Figure 3 – Optical image of the graphene domains on Cu foil 11 Figure 4 – Schematic view of oxidation system 11 Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size 12 Figure 6 – Example of domain size analysis 13 Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 15 Figure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in 15	A.1 Example	15
A.3 Format of the test report 19 Annex B (informative) Alternative methods for evaluating graphene domains and defects 21 Bibliography 22 Figure 1 – Applications of graphene 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries 10 Figure 3 – Optical image of the graphene domains on Cu foil 11 Figure 4 – Schematic view of oxidation system 11 Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size 12 Figure 6 – Example of domain size analysis 13 Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 15 Figure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in 15	A.2 Sampling plan	18
Annex B (informative) Alternative methods for evaluating graphene domains and defects. 21 Bibliography 22 Figure 1 – Applications of graphene. 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries. 10 Figure 3 – Optical image of the graphene domains on Cu foil. 11 Figure 4 – Schematic view of oxidation system 11 Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size 12 Figure 6 – Example of domain size analysis. 13 Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 15 Figure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in 15	A.3 Format of the test report	19
defects 21 Bibliography 22 Figure 1 – Applications of graphene 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries 10 Figure 3 – Optical image of the graphene domains on Cu foil. 11 Figure 4 – Schematic view of oxidation system 11 Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size 12 Figure 6 – Example of domain size analysis 13 Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 15 Figure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in 15	Annex B (informative) Alternative methods for evaluating graphene domains and	
Bibliography 22 Figure 1 – Applications of graphene 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries 10 Figure 3 – Optical image of the graphene domains on Cu foil 11 Figure 4 – Schematic view of oxidation system 11 Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size 12 Figure 6 – Example of domain size analysis 13 Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 15 Figure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in 14	defects	21
Figure 1 – Applications of graphene 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries. 10 Figure 3 – Optical image of the graphene domains on Cu foil. 11 Figure 4 – Schematic view of oxidation system 11 Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size 12 Figure 6 – Example of domain size analysis 13 Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 15 Figure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in 14	Bibliography	22
Figure 1 – Applications of graphene 6 Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries 10 Figure 3 – Optical image of the graphene domains on Cu foil 11 Figure 4 – Schematic view of oxidation system 11 Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size 12 Figure 6 – Example of domain size analysis 13 Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 15 Figure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in 16		
Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries	Figure 1 – Applications of graphene	6
Figure 3 – Optical image of the graphene domains on Cu foil. 11 Figure 4 – Schematic view of oxidation system 11 Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size 11 Gistribution 12 Figure 6 – Example of domain size analysis 13 Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 15 Figure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in 15	Figure 2 – Schematics for oxidation of copper foil through the graphene boundaries	10
Figure 4 – Schematic view of oxidation system 11 Figure 5 – Optical images of graphene/Cu after oxidation and analysed grain size 12 distribution 12 Figure 6 – Example of domain size analysis 13 Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 15 Figure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in 12	Figure 3 – Optical image of the graphene domains on Cu foil	11
Figure 1 – Contraction of exclusion	Figure 4 – Schematic view of oxidation system	11
Ingulation 12 distribution 12 Figure 6 – Example of domain size analysis 13 Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 1050 °C by CVD with CH ₄ Tigure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in 15	Figure 5 – Ontical images of graphene/Cu after oxidation and analysed grain size	
Figure 6 – Example of domain size analysis13Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at1050 °C by CVD with CH4Tigure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in15	distribution	12
Figure A.1 – Photograph of graphene/Cu foil (7cm × 7 cm) for graphene grown at 1 050 °C by CVD with CH ₄	Figure 6 – Example of domain size analysis	13
1 050 °C by CVD with CH ₄	Figure A 1 – Photograph of graphene/Cu foil (7cm x 7 cm) for graphene grown at	
Figure A.2 – SEM image of graphene/Cu after oxidation at the points as specified in	1 050 °C by CVD with CH_4	15
righte A.Z. CEN maye of graphene/ou after oxidation at the points as specified in	Figure $\Delta 2 = SEM$ image of graphene/Cu after oxidation at the points as specified in	
Figure A.6	Figure A.6	16

Figure A.3 – Measuring graphene domain size of Figure A.2 using Image J	16
Figure A.4 –Domain size distribution and average domain size of graphene shown in	17
Figure A.Z	17
Figure A.5 – Accumulative domain size distribution shown in Figure A.4 and average domain size of graphene measured at 9 points shown in Figure A.6	18
Figure A.6 – Location of the analysed area on the sample	18
Figure B.1 – Typical methods for observing graphene domain and grain boundaries	21
Table A.1 – Product identification (in accordance with IEC 62565-3-1)	19
Table A.2 – General material description (in accordance with IEC 62565-3-1)	19
Table A.3 – Measurement related information	19
Table A.4 – KCC measurement results	20

INTERNATIONAL ELECTROTECHNICAL COMMISSION

NANOMANUFACTURING – KEY CONTROL CHARACTERISTICS –

Part 6-3: Graphene-based material – Domain size: substrate oxidation

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a Technical Specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical Specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC TS 62607-6-3, which is a Technical Specification, has been prepared by technical committee 113, Nanotechnology for electrotechnical products and systems.

The text of this Technical Specification is based on the following documents:

Enquiry draft	Report on voting
113/496/DTS	113/549/RVDTS

Full information on the voting for the approval of this Technical Specification can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC TS 62607 series, published under the general title *Nanomanufacturing – Key control characteristics*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

Graphene with two-dimensional honeycomb structures of carbon atoms is known to have exceptional electrical, thermal, and mechanical properties. Because of these properties, graphene is considered for applications in high speed, flexible and transparent devices. Figure 1 shows the images of graphene field effect transistor, flexible touch screen in display, and transparent electrode in solar cell. These applications of graphene are promising candidates for nanoelectronics and optoelectronics. Graphene has been widely investigated by researchers from academic institutions, research institutes, and industries.

Figure 1 – Applications of graphene

Graphene synthesized on Cu or Ni substrate by chemical vapour deposition (CVD) is composed of graphene domains formed during the nucleation and initial growth stage. Graphene defects, such as pinholes, domain boundaries, and cracks, can be formed during the CVD growth or the transfer process.

Properties of graphene are related to the size and distribution of graphene domains and defects. As graphene domain size is increased and graphene defects are reduced, electrical and thermal properties of graphene are improved.

Graphene domains and defects are usually observed by atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and scanning tunnelling microscopy (STM). These analysis methods may cause inconvenience in preparing a sample for analysis and require very expensive equipment that provides only local information of several micrometres and below.

Facile, fast, reliable methods of evaluating graphene domains have not yet been established and urgently need to be developed.

NANOMANUFACTURING – KEY CONTROL CHARACTERISTICS –

Part 6-3: Graphene-based material – Domain size: substrate oxidation

1 Scope

This part of IEC TS 62607 establishes a standardized method to determine the structural key control characteristic

- domain size
 - for films consisting of graphene grown by chemical vapour deposition (CVD) on copper by
- substrate oxidation.

It provides a fast, facile and reliable method to evaluate graphene domains formed on copper foil or copper film for understanding the effect of the graphene domain size on properties of graphene and enhancing the performance of high speed, flexible, and transparent devices using CVD graphene.

- The domain size determined in accordance with this document will be listed as a key control characteristic in the blank detail specification for graphene IEC 62565-3-1. Domain density is an equivalent measure.
- The domain size as derived by this method is defined as the mean value of size of the domains in the observed area specified by supplier in terms of cm² or µm².
- The method is applicable for graphene grown on copper by CVD. The characterization is done on the copper foil before transfer to the final substrate.
- As the method is destructive, the samples cannot be re-launched into the fabrication process.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ASTM E1951-14, Standard Guide for Calibrating Reticles and Light Microscope Magnification

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp