Plugs, socket-outlets, vehicle connectors and vehicle inlets — Conductive charging of electric vehicles

Part 3-1: Vehicle connector, vehicle inlet and cable assembly for DC charging intended to be used with a thermal management system
National foreword

This Published Document is the UK implementation of IEC TS 62196-3-1:2020.

The UK participation in its preparation was entrusted to Technical Committee PEL/23/4, Protected type plugs and sockets.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2020
Published by BSI Standards Limited 2020

ISBN 978 0 580 98163 0
ICS 29.120.30; 43.120

Compliance with a British Standard cannot confer immunity from legal obligations.

This Published Document was published under the authority of the Standards Policy and Strategy Committee on 31 March 2020.

Amendments/corrigenda issued since publication

<table>
<thead>
<tr>
<th>Date</th>
<th>Text affected</th>
</tr>
</thead>
</table>

This is a preview of "PD IEC TS 62196-3-1:...". Click here to purchase the full version from the ANSI store.
TECHNICAL SPECIFICATION

Plugs, socket-outlets, vehicle connectors and vehicle inlets – Conductive charging of electric vehicles –
Part 3-1: Vehicle connector, vehicle inlet and cable assembly for DC charging intended to be used with a thermal management system
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 108</td>
<td>Interface overview</td>
<td>21</td>
</tr>
<tr>
<td>Table 109</td>
<td>Short-time test currents</td>
<td>22</td>
</tr>
<tr>
<td>Table 110</td>
<td>Properties of DC accessory contact plating for pin</td>
<td>25</td>
</tr>
<tr>
<td>Table 111</td>
<td>Normal operation</td>
<td>26</td>
</tr>
<tr>
<td>Table 112</td>
<td>Pull force and torque test values for cable anchorage</td>
<td>31</td>
</tr>
<tr>
<td>Table 113</td>
<td>Impact energy for ball impact test</td>
<td>32</td>
</tr>
<tr>
<td>Table 114</td>
<td>Mechanical load flexing test</td>
<td>33</td>
</tr>
<tr>
<td>Table A.1</td>
<td>Maximum contact resistances and dimensions of reference device AA_0</td>
<td>37</td>
</tr>
<tr>
<td>Table A.2</td>
<td>Dimensions for reference device conductor</td>
<td>43</td>
</tr>
<tr>
<td>Table C.1</td>
<td>Contact resistances and dimensions of reference device EE_0</td>
<td>46</td>
</tr>
<tr>
<td>Table C.2</td>
<td>Dimensions for reference device conductor (configuration EE)</td>
<td>51</td>
</tr>
<tr>
<td>Table D.1</td>
<td>Contact resistances and dimensions of reference device FF_0</td>
<td>54</td>
</tr>
<tr>
<td>Table D.2</td>
<td>Dimensions for reference device conductor (configuration FF)</td>
<td>59</td>
</tr>
</tbody>
</table>
INTERNATIONAL ELECTROTECHNICAL COMMISSION

PLUGS, SOCKET-OUTLETS, VEHICLE CONNECTORS AND VEHICLE INLETS – CONDUCTIVE CHARGING OF ELECTRIC VEHICLES –

Part 3-1: Vehicle connector, vehicle inlet and cable assembly for DC charging intended to be used with a thermal management system

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a Technical Specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical Specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.
IEC TS 62196-3-1, which is a Technical Specification, has been prepared by subcommittee 23H: Plugs, Socket-outlets and Couplers for industrial and similar applications, and for Electric Vehicles, of IEC technical committee TC 23: Electrical accessories.

The text of this Technical Specification is based on the following documents:

<table>
<thead>
<tr>
<th>Draft TS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>23H/448/DTS</td>
<td>23H/460/RVDTS</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this Technical Specification can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all the parts in the IEC 62196 series, published under the general title *Plugs, socket-outlets, vehicle connectors and vehicle inlets – Conductive charging of electrical vehicles*, can be found on the IEC website.

This document is to be read in conjunction with IEC 62196-1:2014 and IEC 62196-3:2014. The particular requirements in this document supplement or modify the corresponding clauses in Part 3, which, in turn, is based on Part 1. Where the text indicates an "addition" to or a "replacement" of the relevant requirement, test specification or explanation of Part 3, these changes are made to the relevant text of Part 3 or Part 1, which then becomes part of this document. Where no change is necessary, the words "Clause X of IEC 62196-3:2014 applies" are used.

Subclauses, figures, tables or notes which are additional to those in IEC 62196-3 are numbered starting from 101.

In this document, the following print types are used:

- requirements proper: in roman type;
- test specifications: in italic type;
- notes: in smaller roman type.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- transformed into an International Standard,
- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

Responding to global challenges of CO₂ reduction and energy safety, the automobile industries have been accelerating the development and commercialization of electric vehicles (EV) and hybrid electric vehicles. In addition to the prevailing hybrid electric vehicles, battery electric vehicles including plug-in hybrid electric vehicles are going to be mass-marketed. To support the diffusion of such vehicles, this document provides the standard interface configurations of vehicle couplers and accessories to be used in conductive charging of electric vehicles, taking the most frequent charging situations into consideration.

To meet the market demand for increased electric vehicle ranges, batteries with larger capacities need to be integrated. To charge those batteries with larger capacity in similar times as existing charging times or even faster, the charging power needs to be increased. Besides increasing the charging voltage, the charging current also needs to be increased to boost the charging power. The larger charging current implies either larger conductor cross sections for the cable assembly according to existing standards or additional measures in the cable assembly.

The large conductor cross sections that are required according to the existing design requirements and test methods result in significantly thicker and heavier cable assemblies. These are difficult to handle and thus less desirable for public use. Therefore, to improve the usability of charging systems this document makes use of thermal management techniques to enhance the performance of the accessories.

This document provides definitions, requirements, and tests for EV couplers up to rated current according to IEC 62196-1, which supports backward compatibility to couplers according to IEC 62196-3:2014.

IEC 62196 is divided into several parts as follows:

- Part 1: General requirements, comprising clauses of a general character.
- Part 2: Dimensional compatibility requirements for AC pin and contact-tube accessories.
- Part 3: Dimensional compatibility requirements for DC and AC/DC pin and contact-tube vehicle couplers.
- Part 4¹: Dimensional compatibility requirements for DC pin and contact-tube accessories for Class II or Class III applications.
- Part 6²: Dimensional compatibility requirements for DC pin and contact-tube couplers for applications using a system of protective electrical separation.

¹ Under preparation.
² Under consideration.
PLUGS, SOCKET-OUTLETS, VEHICLE CONNECTORS AND VEHICLE INLETS – CONDUCTIVE CHARGING OF ELECTRIC VEHICLES –

Part 3-1: Vehicle connector, vehicle inlet and cable assembly for DC charging intended to be used with a thermal management system

1 Scope

This document applies to accessories and cable assemblies with the same configuration as specified in IEC 62196-3:2014 with rated operating voltage not exceeding 1 500 V DC and a rated current not exceeding 500 A that employ

– thermal sensing, or
– thermal transport and thermal sensing

with the system architecture described in 4.101.

These accessories and cable assemblies are intended to be used in conductive charging systems for circuits specified in IEC 61851-23.

NOTE Edition 2 of IEC 61851-23 is under development.

The accessories covered by this document are intended to be used in charging mode 4 according to IEC 61851-1. These accessories are intended to be connected to cables according to the IEC 62893 series for DC cables.

2 Normative references

Clause 2 of IEC 62196-3:2014 applies, except as follows:

Additional normative references:

IEC 60364-5-54:2011, Low-voltage electrical installations – Part 5-54: Selection and erection of electrical equipment – Earthing arrangements and protective conductors

IEC 61851-23,—3, Electric vehicle conductive charging system – Part 23: DC electric vehicle supply equipment

IEC 62196-1:2014, Plugs, socket-outlets, vehicle connectors and vehicle inlets – Conductive charging of electric vehicles – Part 1: General requirements

IEC 62196-2:2016, Plugs, socket-outlets, vehicle connectors and vehicle inlets – Conductive charging of electric vehicles – Part 2: Dimensional compatibility and interchangeability requirements for AC pin and contact-tube accessories