Code of practice for strengthened/reinforced soils

Part 2: Soil nail design
Foreword
Section 1: General
 1.1 Scope
 1.2 Normative references
 1.3 Terms, definitions and symbols
 Figure 1 — Terms used in this standard
Section 2: Soil nailing applications and construction considerations
 2.1 General
 2.2 Description of typical soil nail element components
 Figure 2 — Possible components of soil nail system, pre-bored and grouted, shown with rigid facing
 2.3 Typical applications
 Figure 3 — Typical soil nailing applications (new cut and vertical cutting)
 Figure 4 — Soil nail placement to preserve existing vegetation
 Figure 5 — Example of soil nailing of an existing retaining structure
 Figure 6 — Example of soil nailing of an embankment
 2.4 Construction design considerations
 Figure 7 — Bulk excavation and requirement to check overall stability
 Figure 8 — Excavation tolerances
Section 3: Suitability of ground and groundwater conditions
 3.1 General
 3.2 Understanding the site geology
 3.3 General requirements for suitability of soils and rocks for soil nailing
 3.4 Suitability of cohesive soils for soil nailing
 Table 1 — Summary of ground conditions best suited and less well suited to soil nailing
 Figure 9 — Examples of the effect of pre-existing shear surfaces on soil-nailed structures
 Figure 10 — Problems caused by granular material in glacial till
 3.5 Suitability of granular soils for soil nailing
 3.6 Suitability of weak rocks for soil nailing
 3.7 Suitability of fill for soil nailing
 Figure 11 — Adverse effects of jointing and bedding on cut slopes in weak or weathered rock
 3.8 Effects of groundwater on soil nailing
 Table 2 — Principal types and suitability for soil nailing of non-engineered fill
 Figure 12 — Effect of groundwater on wall facing
 3.9 Effects of underlying geological features on soil nailing
 3.10 Site investigation
 3.11 Soil-nailing related site investigation — Field trials
 3.12 Soil-nailing related site investigation — Chemical testing
 3.13 Preliminary assessment of degradation risk
 Table 3 — Typical corrosion rates for uncoated steel in undisturbed ground conditions
 3.14 Detailed assessment of degradation risk for buried components
 3.15 Detailed assessment of degradation risk for exposed components and surfaces
 Table 4 — Description of typical atmospheric environments related to the estimation of corrosivity categories (Copy of Table C.1 from BS EN ISO 9223:2012)
Section 4: Basis for design
 4.1 Design method
4.2 Analysis of stability

Figure 16 — Ultimate limit state modes of failure
Figure 17 — Slip circle method of slices
Figure 18 — Methods of resolving nail force and degree of conservatism
Figure 19 — Two-part wedge

4.3 Soil nail pullout resistance

Figure 20 — Mobilization of bond stress as a function of relative soil-nail movement
Figure 21 — Limiting nail strength envelope
Figure 22 — Effect of far field stress on mobilized bond stress
Figure 23 — Modification of interface stresses due to far field stress changes
Figure 24 — Relationships between radial friction normalized by vertical effective stress for a range of characteristic friction angle
Figure 25 — Modification of local interface stresses due to nail installation effects
Figure 26 — Effect of test length and axial stiffness on measured average bond
Table 6 — Ultimate limit state approach to deriving design values

4.5 Soil nail element design

4.6 Influence of durability and degradation on the choice of nail tendon

Table 7 — Types of stainless steel
Table 8 — Types of glass fibre (after Littlejohn [30])
Figure 27 — A 25 mm diameter steel tendon with a 40 mm diameter impermeable duct
Figure 28 — A centralizer to provide cover to a coated nail to reduce the risk of damage to the coating during installation
Figure 29 — A stainless steel self-drilling tendon complete with drill bit, hollow tendon, coupler and head plate
Table 9 — Summary of recommendations for different soil nailing systems in relation to different categories of risk

4.7 Design of facing

Figure 30 — Calculation of required nail plate size for a given design nail force
Figure 31 — Calculation of design loading acting on the rear of hard facing
Figure 32 — Calculation of design loading acting on a simple flexible facing
Figure 33 — Calculation of tension and deformation in flexible facing for a given design loading
Figure 34 — Requirements of a complex flexible facing

4.8 Drainage

Figure 35 — Typical types of drainage for soil nailing
Figure 36 — Typical surface water interceptor detail above a steep soil-nailed slope
Figure 37 — Example of a raking drain in a steep soil-nailed slope
Figure 38 — Typical detail for a weep hole in a steep soil-nailed wall

Section 5: Serviceability and movements

5.1 Serviceability limit state
5.2 Serviceability limit state analysis
5.3 Estimation of movement — General
5.4 Use of empirical relationships
Table 10 — Displacements at the top of steep soil nailed structures
5.5 Numerical modelling
5.6 Case studies

Section 6: Design verification

6.1 Testing
Table 11 — Type of soil nail test (from BS EN 14490:2010)
Table 12 — Recommended test frequency (from BS EN 14490:2010)
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Nail pullout resistance</td>
<td>91</td>
</tr>
<tr>
<td>6.3</td>
<td>Materials testing</td>
<td>95</td>
</tr>
<tr>
<td>6.4</td>
<td>Other tests</td>
<td>95</td>
</tr>
<tr>
<td>6.5</td>
<td>Monitoring</td>
<td>95</td>
</tr>
<tr>
<td>6.6</td>
<td>Monitoring during construction</td>
<td>95</td>
</tr>
<tr>
<td>6.7</td>
<td>Long-term or post-construction monitoring</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Section 7: Maintenance</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>97</td>
</tr>
</tbody>
</table>
Foreword

Publishing information
This part of BS 8006 is published by BSI Standards Limited, under licence from The British Standards Institution, and came into effect on 31 December 2011. It was prepared by Subcommittee B/526/4, *Strengthened/reinforced soils and other fills,* under the authority of Technical Committee B/526, Geotechnics. A list of organizations represented on these committees can be obtained on request to their secretary.

Supersession

Relationship with other publications
This standard is published in two parts:

- *Code of practice for strengthened/reinforced soils and other fills*
- *Code of practice for strengthened/reinforced soils – Part 2: Soil nail design*

This part has been drafted following the principles of BS EN 1997-1:2004.

Information about this document
This part of BS 8006 was drafted to meet the specific needs of designers and installers of soil nails for strengthening and/or reinforcing soil slopes.

Text introduced by or altered by Amendment No. 1 is indicated in the text by tags Ấn Ấn. Minor editorial corrections are not tagged.

Use of this document
As a code of practice, this part of BS 8006 takes the form of guidance and recommendations. It should not be quoted as if it were a specification and particular care should be taken to ensure that claims of compliance are not misleading.

Any user claiming compliance with this part of BS 8006 is expected to be able to justify any course of action that deviates from its recommendations.

It has been assumed in the preparation of this British Standard that the execution of its provisions will be entrusted to appropriately qualified and experienced people, for whose use it has been produced.

The recommendations in this British Standard are based on typical UK practice and therefore might not be wholly valid in other territorial or regional environments. Design checks in accordance with other British or international Standards might be necessary.

This standard is likely to be used under a variety of contractual arrangements and forms of contract. In many cases multiple designers might be involved. Therefore, irrespective of the contract form it is essential that the design of the soil nailing element of a project is properly integrated into whole scheme and contractual interfaces are clearly and appropriately specified within contract documents.

Presentational conventions
The provisions in this standard are presented in roman (i.e. upright) type. Its recommendations are expressed in sentences in which the principal auxiliary verb is “should”.
Commentary, explanation and general informative material is presented in smaller italic type, and does not constitute a normative element.

Contractual and legal considerations

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard cannot confer immunity from legal obligations.
Section 1: General

1.1 Scope

This part of BS 8006 gives recommendations and guidance for stabilizing soil slopes and faces using soil nails. Other methods of stabilization using reinforced soil methods are given in BS 8006-1:2010 and both parts might be needed for complex structures.

Additional considerations might be required for unusually loaded or high soil nailed slopes, or where they interface with other structures.

Whilst BS EN 1997-1:2004 specifically excludes soil nailing, this standard is intended to harmonize the design approach of soil nailing with other geotechnical structures designed using BS EN 1997-1:2004.

The principal purpose of this standard is to provide design guidance, however, where knowledge of construction methodology is required for design purposes then appropriate paragraphs have been included. Construction guidance is given in execution standard BS EN 14490:2010. At the time of preparation of this standard, CEN Technical Committee TC341 is drafting a standard covering the testing of soil nails.

Structures and processes that are similar to soil nailing but not addressed in the standard are described in 2.3.6.

1.2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

BS 8006-1:2010, Code of practice for strengthened/reinforced soils and other fills
BS 8081, Code of practice for grouted anchors¹)
BS EN 196 (all parts), Methods of testing concrete
BS EN 197-1:2000, Cement — Part 1: Composition, specifications and conformity criteria for common cements
BS EN 206-1, Concrete — Part 1: Specification, performance, production and conformity
BS EN 1537, Execution of special geotechnical work—Ground anchors
BS EN 1990, Eurocode — Basis of structural design
BS EN 1997-2, Eurocode 7 — Geotechnical design — Part 2: Ground investigation and testing
BS EN 10080, Steel for the reinforcement of concrete — Weldable reinforcing steel — General
BS EN 14487, (both parts), Sprayed concrete
BS EN 14490:2010, Execution of special geotechnical works — Soil nailing

¹) This standard also gives an informative reference(s) to BS 8081:2015:A1:2017.