Intelligent transport systems — Bicyclist detection and collision mitigation systems (BDCMS) — Performance requirements and test procedures
National foreword

This British Standard is the UK implementation of ISO 22078:2020.

The UK participation in its preparation was entrusted to Technical Committee EPL/278, Intelligent transport systems.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2020
Published by BSI Standards Limited 2020

ISBN 978 0 580 52265 9

ICS 35.240.60; 43.040.80

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 April 2020.

Amendments/corrigenda issued since publication

<table>
<thead>
<tr>
<th>Date</th>
<th>Text affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Intelligent transport systems —
Bicyclist detection and collision mitigation systems (BDCMS) —
Performance requirements and test procedures

Systèmes de transport intelligents — Systèmes de détection des cyclistes et d’atténuation des collisions (BDCMS) — Exigences de performance et procédures d’essai
Contents

Foreword .. iv
Introduction ... v
1 Scope .. 1
2 Normative references .. 1
3 Terms and definitions .. 2
4 Symbols ... 3
5 Requirements ... 3
 5.1 Minimum enabling capabilities .. 3
 5.2 Operating model — State transition diagram .. 4
 5.2.1 General .. 4
 5.2.2 State functional descriptions ... 4
 5.3 System types ... 5
 5.4 System classes ... 5
 5.5 Performance requirements ... 5
 5.5.1 General .. 5
 5.5.2 Hazardous situation .. 5
 5.5.3 Operating speed ... 6
 5.5.4 Horizontal curve radius capability .. 7
 5.5.5 Countermeasure requirements ... 7
 5.5.6 Driver controls and human interface .. 8
6 Test procedures ... 9
 6.1 General .. 9
 6.2 Bicyclist test target specification ... 9
 6.2.1 Test target physical characteristics .. 9
 6.2.2 Detectability specifications ... 9
 6.3 Environmental conditions ... 9
 6.3.1 General .. 9
 6.3.2 Driving surface .. 9
 6.3.3 Ambient air temperature ... 9
 6.3.4 Horizontal visibility ... 9
 6.3.5 Ambient illumination .. 10
 6.4 Test procedure for longitudinal scenario (limited dynamic-test) .. 12
 6.5 Test procedure for crossing scenario (limited dynamic-test) ... 13

Annex A (informative) Information relative to BDCMS .. 15

Bibliography .. 18
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 204, Intelligent transport systems.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.
Introduction

Bicyclist detection and collision mitigation systems (BDCMS) reduce the severity of collisions between a human-driven vehicle and bicyclists that cannot be avoided and may reduce the likelihood of such collisions by automatically activating emergency braking (EB). BDCMS assist in slowing the subject vehicle (SV) when a collision is likely.

BDCMS functions may be used as a stand-alone system or might be part of a driver assistance system. As depicted in Figure 1, the BDCMS will provide information to the driver and perform SV actuation in the form of longitudinal control.

![Figure 1 — BDCMS functional elements](image-url)
Intelligent transport systems — Bicyclist detection and collision mitigation systems (BDCMS) — Performance requirements and test procedures

1 Scope

This document specifies the concept of operation, minimum functionality, system requirements, system interfaces, and test procedures for bicyclist detection and collision mitigation systems (BDCMS). It also defines the system test criteria necessary to verify that a given implementation meets the requirements of this document. Implementation choices are left to system designers, wherever possible.

BDCMS are fundamentally intended to provide emergency braking (EB) of equipped vehicles in order to mitigate collision severity between the subject vehicle (SV) and a bicyclist. BDCMS detect bicyclists forward of the SV, determine if the detected bicyclists are in a hazardous situation with respect to the SV, and initiate EB if a hazardous situation exists and a collision is imminent. Systems that include other countermeasures such as evasive steering are outside the scope of this document.

This document defines two types of BDCMS (based on operation in different ambient illuminance) and two classes of BDCMS (based on operation on different vehicle size classes), as depicted in Table 1. This document does not apply to motorcycles. The operational design domain is public roads. BDCMS is not intended for off-road use.

Table 1 — Types and classes of BDCMS

<table>
<thead>
<tr>
<th>BDCMS type</th>
<th>BDCMS class I</th>
<th>BDCMS class II</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDCMS type I</td>
<td>Daytime only</td>
<td>Daytime only</td>
</tr>
<tr>
<td></td>
<td>Light vehicles only</td>
<td>Heavy vehicles only</td>
</tr>
<tr>
<td>BDCMS type II</td>
<td>Daytime, twilight, and night-time</td>
<td>Daytime, twilight, and night-time</td>
</tr>
<tr>
<td></td>
<td>Light vehicles only</td>
<td>Heavy vehicles only</td>
</tr>
</tbody>
</table>

Responsibility for the safe operation of the vehicle remains with the driver.

Licensable motor vehicles intended for use on public roads (i.e. motorcycles, cars, light trucks, buses, motor coaches), and other heavy vehicles as hazards are outside the scope of this document and are covered under ISO 22839.

Pedestrians are outside the scope of this document and are covered under ISO 19237.

Annex A contains informative information relative to BDCMS.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 8608, Mechanical vibration — Road surface profiles — Reporting of measured data

ISO 19206-4:—1), Road vehicle — Test devices for target vehicles, vulnerable road users and other objects, for assessment of active safety functions — Part 4: Requirements for bicyclist targets

ISO/CIE 19476, Characterization of the performance of illuminance meters and luminance meters