Transformers and inductors for use in electronic and telecommunication equipment — Measuring methods and test procedures
National foreword

This British Standard is the UK implementation of EN IEC 61007:2020. It is identical to IEC 61007:2020. It supersedes BS EN 61007:1997, which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee EPL/51, Transformers, inductors, magnetic components and ferrite materials.

A list of organizations represented on this committee can be obtained on request to its committee manager.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2020
Published by BSI Standards Limited 2020

ISBN 978 0 539 01985 8

ICS 29.100.10; 29.180

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 September 2020.

Amendments/corrigenda issued since publication

<table>
<thead>
<tr>
<th>Date</th>
<th>Text affected</th>
</tr>
</thead>
</table>

This is a preview of "BS EN IEC 61007:2020". Click here to purchase the full version from the ANSI store.
Transformers and inductors for use in electronic and telecommunication equipment - Measuring methods and test procedures

(IEC 61007:2020)
The text of document 51/1319/CDV, future edition 3 of IEC 61007, prepared by IEC/TC 51 "Magnetic components, ferrite and magnetic powder materials" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 61007:2020.

The following dates are fixed:

• latest date by which the document has to be implemented at national (dop) 2021-05-24 level by publication of an identical national standard or by endorsement
• latest date by which the national standards conflicting with the (dow) 2023-08-24 document have to be withdrawn

This document supersedes EN 61007:1997 and all of its amendments and corrigenda (if any).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 61007:2020 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 61000-2-2 NOTE Harmonized as EN 61000-2-2
IEC 61000-3-12 NOTE Harmonized as EN 61000-3-12
Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu.

<table>
<thead>
<tr>
<th>Publication</th>
<th>Year</th>
<th>Title</th>
<th>EN/HD</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60050</td>
<td></td>
<td>Series</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IEC 60068-1</td>
<td>2013</td>
<td>Environmental testing - Part 1: General and guidance</td>
<td>EN 60068-1</td>
<td>2014</td>
</tr>
<tr>
<td>IEC 60068-2-1</td>
<td>2013</td>
<td>Environmental testing - Part 2-1: Tests - Test A: Cold</td>
<td>EN 60068-2-1</td>
<td>2014</td>
</tr>
<tr>
<td>IEC 60068-2-6</td>
<td>2013</td>
<td>Environmental testing - Part 2-6: Tests - Test Fc: Vibration (sinusoidal)</td>
<td>EN 60068-2-6</td>
<td>2014</td>
</tr>
<tr>
<td>IEC 60068-2-7</td>
<td>2013</td>
<td>Basic environmental testing procedures - Part 2-7: Tests - Test Ga and guidance: Acceleration, steady state</td>
<td>EN 60068-2-7</td>
<td>2014</td>
</tr>
<tr>
<td>IEC 60068-2-14</td>
<td>2013</td>
<td>Environmental testing - Part 2-14: Tests - Test N: Change of temperature</td>
<td>EN 60068-2-14</td>
<td>2014</td>
</tr>
<tr>
<td>IEC 60068-2-17</td>
<td>2013</td>
<td>Basic environmental testing procedures - Part 2-17: Tests - Test Q: Sealing</td>
<td>EN 60068-2-17</td>
<td>2014</td>
</tr>
<tr>
<td>IEC 60068-2-20</td>
<td>2013</td>
<td>Environmental testing - Part 2-20: Tests - Test T: Test methods for solderability and resistance to soldering heat of devices with leads</td>
<td>EN 60068-2-20</td>
<td>2014</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 60068-2-30</td>
<td>Environmental testing - Part 2-30: Tests - Test Db: Damp heat, cyclic (12 h + 12 h cycle)</td>
<td>EN 60068-2-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 60068-2-42</td>
<td>Environmental testing - Part 2-42: Tests - Test Kc: Sulphur dioxide test for contacts and connections</td>
<td>EN 60068-2-42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 60068-2-45</td>
<td>Basic environmental testing procedures - Part 2-45: Tests - Test XA and guidance: Immersion in cleaning solvents</td>
<td>EN 60068-2-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 60068-2-78</td>
<td>Environmental testing - Part 2-78: Tests - Test Cab: Damp heat, steady state</td>
<td>EN 60068-2-78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 60270</td>
<td>High-voltage test techniques - Partial discharge measurements</td>
<td>EN 60270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 60695-11-2</td>
<td>Fire hazard testing -- Part 11-2: Test flames - 1 kW nominal premixed flame: Apparatus, confirmatory test arrangement and guidance</td>
<td>EN 60695-11-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 61672-1</td>
<td>Electroacoustics - Sound level meters - Part 1: Specifications</td>
<td>EN 61672-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

FOREWORD ... 6
1 Scope .. 8
2 Normative references .. 8
3 Terms and definitions ... 9
4 Test procedures .. 13
 4.1 Test and measurement conditions ... 13
 4.1.1 General ... 13
 4.1.2 Measurement uncertainty ... 16
 4.1.3 Alternative test methods ... 16
 4.2 Visual inspection .. 16
 4.2.1 General ... 16
 4.2.2 Safety screen position ... 16
 4.2.3 Quality of joints ... 16
 4.3 Dimensioning and gauging procedure ... 19
 4.4 Electrical test procedures .. 19
 4.4.1 Winding resistance .. 19
 4.4.2 Insulation tests ... 20
 4.4.3 Losses .. 23
 4.4.4 Inductance .. 27
 4.4.5 Unbalance ... 27
 4.4.6 Capacitance ... 32
 4.4.7 Transformation ratios .. 35
 4.4.8 Resonant frequency .. 41
 4.4.9 Signal transfer characteristics ... 42
 4.4.10 Cross-talk .. 46
 4.4.11 Frequency response ... 47
 4.4.12 Pulse characteristics .. 48
 4.4.13 Voltage-time product rating ... 49
 4.4.14 Total harmonic distortion ... 50
 4.4.15 Voltage regulation .. 51
 4.4.16 Temperature rise .. 52
 4.4.17 Surface temperature .. 53
 4.4.18 Polarity .. 54
 4.4.19 Screens .. 56
 4.4.20 Noise ... 57
 4.4.21 Corona tests .. 58
 4.4.22 Magnetic fields .. 58
 4.4.23 Inrush current .. 61
 4.5 Environmental test procedures ... 61
 4.5.1 General ... 61
 4.5.2 Soldering ... 61
 4.5.3 Robustness of terminations and integral mounting devices 61
 4.5.4 Shock ... 61
 4.5.5 Bump ... 62
 4.5.6 Vibration (sinusoidal) ... 62
 4.5.7 Acceleration, steady state ... 62
 4.5.8 Rapid change of temperature (thermal shock in air) .. 62
4.5.9 Sealing .. 62
4.5.10 Climatic sequence ... 62
4.5.11 Damp heat, steady state 62
4.5.12 Dry heat .. 63
4.5.13 Mould growth .. 63
4.5.14 Salt mist, cyclic (sodium chloride solution) 63
4.5.15 Sulphur dioxide test for contacts and connections 63
4.5.16 Fire hazard .. 63
4.5.17 Immersion in cleaning solvents 63
4.6 Endurance test procedures 63
 4.6.1 Short-term endurance (load run) 63
 4.6.2 Long-term endurance (life test) 64
Annex A (normative) DC resistance test 65
 A.1 General .. 65
 A.2 Resistance values under 1 Ω – Kelvin double-bridge method ... 65
 A.3 Resistance values from 1 Ω to many kilo-ohms ... 66
 A.3.1 General .. 66
 A.3.2 Ammeter and voltmeter method ... 66
 A.3.3 Substitution method .. 67
 A.3.4 Wheatstone bridge .. 68
 A.3.5 Ohmmeter .. 69
 A.4 Digital ohmmeter – Resistance values from under 1 Ω to many kilo-ohms 70
Annex B (normative) Dielectric voltage withstand test ... 71
Annex C (normative) Induced voltage test ... 73
 C.1 Induced voltage test .. 73
 C.2 General test conditions .. 73
 C.3 General test methods .. 73
 C.4 Induced excitation voltage and frequency 75
 C.5 Repeated induced voltage testing 75
 C.6 Excitation current .. 75
Annex D (normative) No-load loss ... 76
 D.1 General ... 76
 D.2 Excitation waveform .. 76
 D.2.1 General .. 76
 D.2.2 Sine-voltage (sine-flux) excitation 76
 D.2.3 Sine-current excitation ... 77
 D.2.4 Square-wave voltage excitation 77
 D.3 Test method and instrumentation 78
 D.3.1 General .. 78
 D.3.2 Wattmeter .. 78
 D.3.3 Ammeters .. 79
 D.3.4 Voltmeters ... 79
 D.4 Test specifications and results 79
Annex E (normative) Quality factor, Q ... 80
 E.1 General ... 80
 E.2 Accuracy ... 80
 E.3 Generators ... 80
 E.3.1 Signal generator .. 80
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.3.2</td>
<td>Pulse generator</td>
<td>80</td>
</tr>
<tr>
<td>E.3.3</td>
<td>Antenna</td>
<td>80</td>
</tr>
<tr>
<td>E.4</td>
<td>Capacitor</td>
<td>81</td>
</tr>
<tr>
<td>E.5</td>
<td>Measuring circuit</td>
<td>81</td>
</tr>
<tr>
<td>E.5.1</td>
<td>Oscilloscope</td>
<td>81</td>
</tr>
<tr>
<td>E.5.2</td>
<td>Probe</td>
<td>81</td>
</tr>
<tr>
<td>E.6</td>
<td>Measuring procedure</td>
<td>81</td>
</tr>
<tr>
<td>E.7</td>
<td>Calculation</td>
<td>82</td>
</tr>
<tr>
<td>F.1</td>
<td>Symbols</td>
<td>84</td>
</tr>
<tr>
<td>F.2</td>
<td>Theoretical discussion</td>
<td>86</td>
</tr>
<tr>
<td>F.3</td>
<td>Measurement methods</td>
<td>87</td>
</tr>
<tr>
<td>F.3.1</td>
<td>Indirect method</td>
<td>87</td>
</tr>
<tr>
<td>F.3.2</td>
<td>Direct method</td>
<td>88</td>
</tr>
<tr>
<td>F.3.3</td>
<td>Measurement methods</td>
<td>87</td>
</tr>
<tr>
<td>G.1</td>
<td>Detection of corona</td>
<td>89</td>
</tr>
<tr>
<td>G.2</td>
<td>Analysis of corona</td>
<td>89</td>
</tr>
<tr>
<td>G.3</td>
<td>Test conditions and specifications</td>
<td>90</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>91</td>
</tr>
</tbody>
</table>

Figure 1 – Pulse waveform parameters .. 11
Figure 2 – Examples of good solder joints ... 17
Figure 3 – Examples of defective joints ... 18
Figure 4 – No-load current test schematic .. 24
Figure 5 – No-load loss test schematic ... 24
Figure 6 – Simplified diagram for short-circuit power test 26
Figure 7 – Circuit for measuring capacitance unbalance 28
Figure 8 – Circuit for determining common mode rejection ratio 28
Figure 9 – Circuit for measuring impedance unbalance 29
Figure 10 – Circuit for determining cross-talk attenuation 30
Figure 11 – Schematic diagram of phase unbalance and amplitude unbalance 32
Figure 12 – Typical graph for determining self-capacitance 34
Figure 13 – Circuit for determining inter-winding capacitance 35
Figure 14 – Circuit for measurement of voltage transformation ratio 38
Figure 15 – Circuit for measuring current transformation ratio and phase displacement 39
Figure 16 – Measuring circuit of current transformation ratio and phase displacement 40
Figure 17 – Circuit for determining parallel self-resonant frequency 41
Figure 18 – Circuit for determining resonant frequency of resonant assemblies 42
Figure 19 – Circuit for determination of insertion loss 43
Figure 20 – Use of two identical transformers when the transformation ratio is not unity and/or a DC bias is required 44
Figure 21 – Illustration of return loss 45
Figure 22 – Basic return loss test circuit 46
Figure 23 – Circuit diagram for measuring the crossover interference between two transformer coils 47
Figure 24 – Impulse waveform measuring circuit 49
Figure 25 – Non-linearity of magnetizing current
Figure 26 – Voltage regulation test schematic
Figure 27 – Phase (polarity) test using voltage measurement
Figure 28 – Series connection method
Figure 29 – Helmholtz structure
Figure A.1 – Measurement of low resistance
Figure A.2 – Kelvin double-bridge method of measuring low resistance
Figure A.3 – Ammeter and voltmeter method of resistance measurement
Figure A.4 – Measurement of resistance by substitution
Figure A.5 – Connections of Wheatstone bridge
Figure A.6 – Principle of series ohmmeter
Figure A.7 – Digital ohmmeter method of resistance measurement
Figure B.1– Typical high-potential test, showing section 1 under test
Figure B.2– Typical high-potential test of inductor
Figure C.1 – Block diagram of induced voltage surge test
Figure D.1 – Triangular flux-density variation in transformer core
Figure D.2 – Test circuit for transformer no-load losses
Figure E.1 – Damped oscillation method
Figure E.2 – Oscilloscope sweep for damped oscillation method
Figure F.1 – Shielded single winding, core floating
Figure F.2 – Basic electrostatic symbol
Figure F.3 – Multiple-shielded single winding, core terminal (lead) provided
Figure F.4 – Shielded two-winding secondary, core grounded
Figure F.5 – Shielded group of windings, core floating
Figure F.6 – Multiple-shielded group of windings, core terminal (lead) provided
Figure F.7 – Combination of shielding conditions
Figure F.8 – Typical two-winding shielded transformer
Figure F.9 – Simplified representation of Figure F.8
Figure F.10 – Indirect measuring method for electrostatic shielding
Figure G.1 – Typical circuit for corona measurement (circuit 1)
Figure G.2 – Typical circuit for corona measurement (circuit 2)

Table 1 – Recommended tests and specifications for specific transformer and inductor groups
Table 2 – Voltage of dielectric withstanding voltage test
Table 3 – Sound-level corrections for audible noise tests
Table 4 – Cube dimensions, together with corresponding search coil data
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61007 has been prepared by IEC technical committee 51: Magnetic components, ferrite and magnetic powder materials.

This third edition cancels and replaces the second edition published in 1994. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) scope: the application of the scope of IEC 61007 was extended;

b) Clause 2: added new references and updated the references;

c) Clause 3: new definitions were added in 3.3, and in 3.7 the voltage-time product was redefined;
d) test procedures were updated:
 1) addition of test method:
 AC resistance (in 4.4.1.2); short-circuit power test (in 4.4.3.4); efficiency (in 4.4.3.5);
 phase unbalance (in 4.4.5.7); amplitude unbalance (radio frequency) (in 4.4.5.8);
 transformation ratio by impedance (in 4.4.7.1); coefficient of coupling (in 4.4.7.2);
 cross-talk (in 4.4.10);
 2) modification of test method:
 Insulation resistance (an error range of the testing voltage, in 4.4.2.3);
 3) deletion of test method:
 Effective resistance;

e) environmental test procedures: new references were added;

f) Annexes A to G were added.

The text of this International Standard is based on the following documents:

<table>
<thead>
<tr>
<th>CDV</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>51/1319/CDV</td>
<td>51/1339/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.
1 Scope

This document describes a number of tests for use in determining the significant parameters and performance characteristics of transformers and inductors for use in electronics and telecommunication equipment. These test methods are designed primarily for transformers and inductors used in all types of electronics applications that can be involved in any specification for such components. Even though these tests can be useful to the other types of transformers used in power distribution applications in utilities, industry, and others, the tests discussed in this document can supplement or complement the tests but are not intended to replace the tests in standards for transformers. Some of the tests described are intended for qualifying a product for a specific application, while others are test practices used for manufacturing and customer acceptance testing. The test methods described here include those parameters most commonly used in the electronics transformer and inductor industry: electric strength, resistance, power loss, inductance, impedance, balance, transformation ratio and many others used less frequently.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050 (all parts), International Electrotechnical Vocabulary (IEV) (available at www.electropedia.org)

IEC 60068-1: 2013, Environmental testing – Part 1: General and guidance

IEC 60068-2-1, Environmental testing – Part 2-1: Tests – Tests A: Cold

IEC 60068-2-2, Environmental testing – Part 2-2: Tests – Tests 8: Dry heat

IEC 60068-2-6, Environmental testing – Part 2-6: Tests – Test Fc: Vibration (sinusoidal)

IEC 60068-2-7, Basic environmental testing procedures – Part 2-7: Tests – Test Ga and guidance: Acceleration, steady state

IEC 60068-2-13, Basic environmental testing procedures – Part 2-13: Tests – Test M: Low air pressure

IEC 60068-2-14, Environmental testing – Part 2-14: Tests – Test N: Change of temperature

IEC 60068-2-17, Basic environmental testing procedure – Part 2-17: Tests – Test Q: Sealing

IEC 60068-2-20, Environmental testing – Part 2-20: Tests – Test T: Test methods for solderability and resistance to soldering heat of devices with leads