Petroleum and natural gas industries —
Materials for use in H2S-containing
environments in oil and gas production

Part 3: Cracking-resistant CRAs (corrosion-resistant alloys) and other alloys
National foreword

This British Standard is the UK implementation of EN ISO 15156-3:2020. It is identical to ISO 15156-3:2020. It supersedes BS EN ISO 15156-3:2015, which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee PSE/17, Materials and equipment for petroleum, petrochemical and natural gas industries.

A list of organizations represented on this committee can be obtained on request to its committee manager.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2020
Published by BSI Standards Limited 2020

ISBN 978 0 539 06871 9

ICS 77.060; 75.180.10

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 November 2020.

Amendments/corrigenda issued since publication

<table>
<thead>
<tr>
<th>Date</th>
<th>Text affected</th>
</tr>
</thead>
</table>
Petroleum and natural gas industries - Materials for use in H2S-containing environments in oil and gas production - Part 3: Cracking-resistant CRAs (corrosion-resistant alloys) and other alloys (ISO 15156-3:2020)
European foreword

This document (EN ISO 15156-3:2020) has been prepared by Technical Committee ISO/TC 67 "Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries" in collaboration with Technical Committee CEN/TC 12 "Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries" the secretariat of which is held by NEN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by May 2021, and conflicting national standards shall be withdrawn at the latest by May 2021.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN ISO 15156-3:2015.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Endorsement notice

The text of ISO 15156-3:2020 has been approved by CEN as EN ISO 15156-3:2020 without any modification.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>vi</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>2</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>3</td>
</tr>
<tr>
<td>4 Symbols and abbreviated terms</td>
<td>5</td>
</tr>
<tr>
<td>5 Factors affecting the cracking-resistance of CRAs and other alloys in H₂S-containing environments</td>
<td>6</td>
</tr>
<tr>
<td>6 Qualification and selection of CRAs and other alloys with respect to SSC, SCC, and GHSC in H₂S-containing environments</td>
<td>6</td>
</tr>
<tr>
<td>6.1 General</td>
<td>6</td>
</tr>
<tr>
<td>6.2 Evaluation of materials properties</td>
<td>7</td>
</tr>
<tr>
<td>6.2.1 Hardness of parent metals</td>
<td>7</td>
</tr>
<tr>
<td>6.2.2 Cracking-resistance properties of welds</td>
<td>7</td>
</tr>
<tr>
<td>6.2.3 Cracking-resistance properties associated with other fabrication methods</td>
<td>8</td>
</tr>
<tr>
<td>6.3 PREN</td>
<td>9</td>
</tr>
<tr>
<td>7 Purchasing information and marking</td>
<td>9</td>
</tr>
<tr>
<td>7.1 Information that should be supplied for material purchasing</td>
<td>9</td>
</tr>
<tr>
<td>7.2 Marking, labelling, and documentation</td>
<td>10</td>
</tr>
<tr>
<td>Annex A (normative) Environmental cracking-resistant CRAs and other alloys (including Table A.1 — Guidance on the use of the materials selection tables)</td>
<td>11</td>
</tr>
<tr>
<td>Annex B (normative) Qualification of CRAs for H₂S-service by laboratory testing</td>
<td>57</td>
</tr>
<tr>
<td>Annex C (informative) Information that should be supplied for material purchasing</td>
<td>67</td>
</tr>
<tr>
<td>Annex D (informative) Nominated sets of test conditions</td>
<td>69</td>
</tr>
<tr>
<td>Bibliography</td>
<td>70</td>
</tr>
</tbody>
</table>
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 67, Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 12, Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This fourth edition cancels and replaces the third edition (ISO 15156-3:2015), which has been technically revised. The main changes compared to the previous edition are as follows:

- **Table A.27** UNS S17400 (17-4PH SS) has new limits. The use of the alloy at the annotated environmental conditions is now limited to applications where sustained stress is no more than 50 % of SMYS;
- **Table A.32** new limits and annotations for UNS N09946 separate from UNS N09945;
- **Table A.41** inclusion of UNS R55400 (new a-b Ti alloy);
- **Table A.3** UNS S20910 (Nitronic 50) note modifications;
- **Tables A.22, A.23, A.26** through **A.30**, and **A.33** temperature conversion corrections;
- **Table A.23** new note for maximum design tensile stress for UNS J91540;
- **Table A.32** newly added UNS N07718 (high strength Alloy 718, with two-step aging cycle, meeting API 6A CRA composition and a maximum hardness of 45 HRC) and UNS N09955 requirements and note letters designation changes on UNS N09925, N09935, N09945 and N09946;
- **Table A.40** title modification and note clarification;
- **Clause A.13** Cladding, overlays, and wear-resistant alloys modifications;
- **Table A.18** and **Table A.19** (Martensitic SS) remarks modifications;
- **Table A.24** Duplex SS Hot Isostatically Pressed (HIP) inclusion and remarks modification;
— the informative Annex D, "Materials chemical compositions and other information", has been removed due to copyright reasons;
— additions to the bibliography.

A list of all parts in the ISO 15156 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.
Introduction

The consequences of sudden failures of metallic oil and gas field components associated with their exposure to H$_2$S-containing production fluids led to the preparation of the first edition of NACE MR0175 which was published in 1975 by the National Association of Corrosion Engineers, now known as NACE International.

The original and subsequent editions of NACE MR0175 established limits of H$_2$S partial pressure above which precautions against sulfide stress cracking (SSC) were always considered necessary. They also provided guidance for the selection and specification of SSC-resistant materials when the H$_2$S thresholds were exceeded. In more recent editions, NACE MR0175 has also provided application limits for some corrosion-resistant alloys in terms of environmental composition and pH, temperature, and H$_2$S partial pressures.

In separate developments, the European Federation of Corrosion issued EFC Publication 16 in 1995 and EFC Publication 17 in 1996. These documents are generally complementary to those of NACE, though they differed in scope and detail.

In 2003, the publication of the ISO 15156 series and NACE MR0175/ISO 15156 was completed for the first time. These technically identical documents utilized the above sources to provide requirements and recommendations for materials qualification and selection for application in environments containing wet H$_2$S in oil and gas production systems. They are complemented by NACE TM0177 and NACE TM0284 test methods.

The revision of this document, i.e. ISO 15156, involves a consolidation of all changes agreed and published in the Technical Circular 1, ISO 15156-3:2015/Cir.1:2016, the Technical Circular 2, ISO 15156-3:2015/Cir.2:2018 and the Technical Circular 3, ISO 15156-3:2015/Cir.3:2019, published by the ISO 15156 series Maintenance Agency secretariat at DIN.

The changes were developed by, and approved by the ballot of, representative groups from within the oil and gas production industry. The great majority of these changes stem from issues raised by document users. A description of the process by which these changes were approved can be found at the ISO 15156 series maintenance website: www.iso.org/iso15156maintenance.

When found necessary by oil and gas production industry experts, future interim changes to this document will be processed in the same way and will lead to interim updates to this document in the form of Technical Corrigenda or Technical Circulars. Document users should be aware that such documents can exist and can impact the validity of the dated references in this document.

The ISO 15156 series Maintenance Agency at DIN was set up after approval by the ISO Technical Management Board given in document 34/2007. This document describes the makeup of the agency, which includes experts from NACE, EFC, and ISO/TC 67, and the process for approval of amendments. It is available from the ISO 15156 series maintenance website and from the ISO/TC 67 Secretariat. The website also provides access to related documents that provide more detail of the ISO 15156 series maintenance activities.
Petroleum and natural gas industries — Materials for use in H₂S-containing environments in oil and gas production —

Part 3: Cracking-resistant CRAs (corrosion-resistant alloys) and other alloys

WARNING — CRAs (corrosion-resistant alloys) and other alloys selected using this document are resistant to cracking in defined H₂S-containing environments in oil and gas production, but not necessarily immune to cracking under all service conditions. It is the equipment user's responsibility to select the CRAs and other alloys suitable for the intended service.

1 Scope

This document gives requirements and recommendations for the selection and qualification of CRAs (corrosion-resistant alloys) and other alloys for service in equipment used in oil and natural gas production and natural gas treatment plants in H₂S-containing environments whose failure can pose a risk to the health and safety of the public and personnel or to the environment. It can be applied to help avoid costly corrosion damage to the equipment itself. It supplements, but does not replace, the materials requirements of the appropriate design codes, standards, or regulations.

This document addresses the resistance of these materials to damage that can be caused by sulfide stress cracking (SSC), stress corrosion cracking (SCC), and galvanically induced hydrogen stress cracking (GHSC).

This document is concerned only with cracking. Loss of material by general (mass loss) or localized corrosion is not addressed.

Table 1 provides a non-exhaustive list of equipment to which this document is applicable, including exclusions.

This document applies to the qualification and selection of materials for equipment designed and constructed using load controlled design methods. For design utilizing strain-based design methods, see ISO 15156-1:2020, Clause 5.

This document is not necessarily suitable for application to equipment used in refining or downstream processes and equipment.