Railway applications — Aerodynamics

Part 6: Requirements and test procedures for cross wind assessment
National foreword

This British Standard is the UK implementation of EN 14067-6:2018+A1:2022. It supersedes BS EN 14067-6:2010, which is withdrawn.

The start and finish of text introduced or altered by amendment is indicated in the text by tags. Tags indicating changes to CEN text carry the number of the CEN amendment. For example, text altered by CEN amendment A1 is indicated by \[\text{[F5]} \] \[\text{[A]} \].

The UK participation in its preparation was entrusted to Technical Committee RAE/1/-/4, Railway Applications - Aerodynamics.

A list of organizations represented on this committee can be obtained on request to its committee manager.

Contractual and legal considerations

This publication has been prepared in good faith, however no representation, warranty, assurance or undertaking (express or implied) is or will be made, and no responsibility or liability is or will be accepted by BSI in relation to the adequacy, accuracy, completeness or reasonableness of this publication. All and any such responsibility and liability is expressly disclaimed to the full extent permitted by the law.

This publication is provided as is, and is to be used at the recipient’s own risk.

The recipient is advised to consider seeking professional guidance with respect to its use of this publication.

This publication is not intended to constitute a contract. Users are responsible for its correct application.

© The British Standards Institution 2022
Published by BSI Standards Limited 2022

ISBN 978 0 539 14175 7

ICS 45.060.01

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 August 2018.

Amendments/corrigenda issued since publication

<table>
<thead>
<tr>
<th>Date</th>
<th>Text affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 October 2022</td>
<td>Implementation of CEN amendment A1:2022</td>
</tr>
</tbody>
</table>
Railway applications - Aerodynamics - Part 6:
Requirements and test procedures for cross wind assessment

This European Standard was approved by CEN on 3 March 2018 and includes Amendment 1 approved by CEN on 6 June 2022.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

© 2022 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Contents

European foreword ... 6
Introduction .. 7
1 Scope... 8
2 Normative references... 8
3 Terms and definitions ... 8
4 Symbols and abbreviations .. 9
5 Methods and requirements to assess cross wind stability of vehicles .. 22
 5.1 General.. 22
 5.2 Applicability of cross wind methodologies for rolling stock assessment purposes 23
 5.3 Determination of aerodynamic coefficients .. 25
 5.3.1 General.. 25
 5.3.2 Predictive formula .. 25
 5.3.3 Simulations by Computational Fluid Dynamics (CFD) .. 26
 5.4 Reduced-scale wind tunnel measurements .. 29
 5.5 Determination of wheel unloading due to cross winds ... 34
 5.4.1 General.. 34
 5.4.2 Simple method ... 34
 5.4.3 Advanced quasi-static method .. 37
 5.4.4 Time-dependent MBS method using a Chinese hat wind scenario .. 40
 5.6 Presentation form of characteristic wind curves (CWCs) ... 47
 5.5.1 General.. 47
 5.5.2 CWC presentation form for passenger vehicles and locomotives ... 48
 5.5.3 CWC presentation form for freight wagons ... 49
 5.6 Requirements .. 50
 5.6.1 Requirements for passenger vehicles and locomotives running at 250 km/h ≤ v_{\text{max}} ≤ 360 km/h 50
 5.6.2 Requirements for passenger vehicles and locomotives running 140 km/h < v_{\text{max}} < 250 km/h 53
 5.6.3 Requirements for freight wagons .. 53
6 Method to acquire the needed railway line data ... 54
 6.1 General.. 54
 6.2 Presentation form of railway line data .. 54
 6.2.1 General.. 54
 6.2.2 Plan profile ... 54
 6.2.3 Vertical profile ... 55
 6.2.4 Track design speed ... 56
 6.2.5 Walls .. 57
 6.2.6 Meteorological input data for line description .. 57
 6.2.7 Integrated line database .. 58
 6.2.8 Required minimum resolution/accuracy .. 60
7 Methods to assess the wind exposure of a railway line .. 60
Guidance for the analysis and assessment of the cross wind risk .. 61

8.1 General .. 61
8.2 Infrastructure with train speeds at or above 250 km/h ... 61
8.3 Infrastructure with train speeds below 250 km/h ... 61

9 Required documentation ... 62

9.1 General .. 62
9.2 Assessment of cross wind stability of passenger vehicles and locomotives 62
9.3 Assessment of cross wind stability of freight vehicles .. 62
9.4 Acquisition of railway line data ... 62

Annex A (informative) Application of methods to assess cross wind stability of vehicles within Europe 63

Annex B (informative) Blockage correction ... 67

B.1 Dynamic pressure method .. 67
B.2 German method ... 67
B.3 UK method ... 67
B.4 Slotted walls .. 68

Annex C (normative) Wind tunnel benchmark test data for standard ground configuration 69

C.1 General .. 69
C.2 ICE 3 leading vehicle wind tunnel model ... 69
C.3 TGV Duplex power car wind tunnel model .. 70
C.4 ETR 500 power car wind tunnel model .. 71

Annex D (informative) Other ground configurations for wind tunnel testing 73

D.1 Flat ground with gap (TSI HS RST) ... 73
D.2 Double track ballast and rails (TSI HS RST) .. 73
D.3 Standard embankment of 6 m height (TSI HS RST) ... 73
D.4 Flat ground without gap (Finnish method) ... 75
D.5 Double track ballast and rails (UK method) .. 75

Annex E (informative) Wind tunnel benchmark test data for other ground configurations 77

E.1 General .. 77
E.2 ICE 3 leading vehicle wind tunnel model ... 77
E.3 TGV Duplex power car wind tunnel model ... 77
E.4 ETR 500 power car wind tunnel model .. 81

Annex F (informative) Embankment overspeed effect ... 90

Annex G (informative) Atmospheric boundary layer wind tunnel testing ... 91

G.1 General ... 91
G.2 Benchmark tests ... 91
G.3 Wind simulation ... 92
G.3.1 Boundary layer profiles .. 92
G.3.2 Turbulence intensities .. 92
G.3.3 Turbulence integral length scale ... 93
G.4 Model scale and blockage requirements ... 93
G.5 Modelling accuracy .. 93
G.6 Instrumentation requirements ... 93
G.6.1 General ... 93
G.6.2 Speed measurement .. 93
G.6.3 Force and moment balance ... 94
G.7 Data acquisition requirements .. 94
G.7.1 General ... 94
G.7.2 Time scale, sampling frequency and acquisition duration 94
G.7.3 Measurement of temperature and atmospheric pressure 95
G.8 Calculation of mean values ... 95
G.9 Calculation of peak values .. 95
G.10 Calculation of air density .. 96
G.11 Calculation of the uncorrected rolling moment coefficient 96
G.12 Determination of the lee rail roll moment coefficient ... 97
G.13 Data interpolation ... 97
Annex H (informative) Five mass model ... 98
H.1 General ... 98
H.2 Derivation of formulae ... 100
H.3 Example calculations ... 104
H.3.1 General .. 104
H.3.2 Example vehicle 1 .. 105
H.3.3 Example vehicle 2 .. 105
Annex I (normative) Mathematical model for the Chinese hat 113
I.1 Mathematical model for Chinese hat ... 113
I.2 Example calculation for Chinese hat ... 116
Annex J (informative) Stochastic wind model .. 122
J.1 General ... 122
J.2 Assumptions ... 122
J.3 Application range ... 122
J.4 General Approach .. 122
J.4.1 General .. 122
J.4.2 First step: wind tunnel tests (aerodynamic properties determination) 123
J.4.3 Second step: calculation of turbulent wind speed .. 123
J.4.4 Third step: evaluation of aerodynamic forces ... 127
J.4.5 Fourth step: simulation of vehicle dynamics ... 128
J.4.6 Fifth step: evaluation of characteristic wind speed .. 128

Annex K (informative) Stability of passenger vehicles and locomotives against overturning according to national guidelines .. 130

K.1 General .. 130
K.2 According to DB Guideline 80704 (Germany) .. 130
K.3 According to Railway Group Standard GM/RT 2141 (Great Britain) ... 132

Annex L (informative) Information on methods to assess the wind exposure of a railway line ... 133

L.1 General .. 133
L.2 Wind map approaches .. 133
L.3 Transfer approaches ... 134

Annex M (informative) Extended CWCs .. 136

Bibliography .. 139
European foreword

This document (EN 14067-6:2018+A1:2022) has been prepared by Technical Committee CEN/TC 256 “Railway applications”, the secretariat of which is held by DIN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by January 2023, and conflicting national standards shall be withdrawn at the latest by January 2023.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

This document includes Amendment 1 approved by CEN on 6 June 2022.

This document supersedes EN 14067-6:2018.

The start and finish of text introduced or altered by amendment is indicated in the text by tags.

This European Standard is part of the series "Railway applications — Aerodynamics" which consists of the following parts:

— Part 1: Symbols and units;
— Part 3: Aerodynamics in tunnels;
— Part 4: Requirements and test procedures for aerodynamics on open track;
— Part 5: Requirements and test procedures for aerodynamics in tunnels;
— Part 6: Requirements and test procedures for cross wind assessment.

Any feedback and questions on this document should be directed to the users' national standards body. A complete listing of these bodies can be found on the CEN website.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.
Introduction

Trains running on open track are exposed to cross winds. The cross wind safety of railway operations depends on vehicle and infrastructure characteristics and operational conditions. Important parameters are:

— aerodynamic characteristics of the vehicle;

— vehicle dynamics (e.g. mass, suspension, bump stops);

— track gauge;

— line characteristics (radius and cant of the track, height of embankments and bridges, walls near the track);

— wind exposure of the line;

— operating speed, mode of operation (non-tilting, tilting, running direction).
1 Scope

This document gives guidelines for the cross wind assessment of railways.

This document is applicable to all passenger vehicles, locomotives and power cars (with a maximum train speed above 140 km/h up to 360 km/h) and freight wagons (with a maximum train speed above 80 km/h up to 160 km/h) and track gauges from 1 435 mm to 1 668 mm inclusive. For passenger vehicles, locomotives and power cars with a maximum train speed between 250 km/h and 360 km/h, a requirement to demonstrate the cross wind stability is imposed. This document is not applicable to light rail and urban rail vehicles.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 14067-4, Railway applications – Aerodynamics – Part 4: Requirements and test procedures for aerodynamics on open track

EN 14363, Railway applications - Testing and Simulation for the acceptance of running characteristics of railway vehicles - Running Behaviour and stationary tests

EN 15663, Railway applications - Vehicle reference masses

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at http://www.iso.org/obp

3.1 bias
systematic error affecting an estimate

Note 1 to entry: In this document, it is expressed as the ratio of a coefficient obtained during benchmark wind tunnel tests to the equivalent coefficient obtained during new wind tunnel tests.

3.2 coordinate system
system denoting the axis for forces, moments, dimensions and wind speeds as defined in Figure 1

Note 1 to entry: The coordinate system is shown in Figure 1.