

BSI Standards Publication

Generic smart grid requirements

Part 1: Specific application of the use case methodology for defining generic smart grid requirements according to the IEC systems approach

National foreword

This British Standard is the UK implementation of IEC SRD 62913-1:2022. It supersedes BS IEC SRD 62913-1:2019, which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee L/13, Smart Energy Systems coordination group.

A list of organizations represented on this committee can be obtained on request to its committee manager.

Contractual and legal considerations

This publication has been prepared in good faith, however no representation, warranty, assurance or undertaking (express or implied) is or will be made, and no responsibility or liability is or will be accepted by BSI in relation to the adequacy, accuracy, completeness or reasonableness of this publication. All and any such responsibility and liability is expressly disclaimed to the full extent permitted by the law.

This publication is provided as is, and is to be used at the recipient's own risk.

The recipient is advised to consider seeking professional guidance with respect to its use of this publication.

This publication is not intended to constitute a contract. Users are responsible for its correct application.

© The British Standards Institution 2023 Published by BSI Standards Limited 2023

ISBN 978 0 539 18550 8

ICS 29.020; 29.240

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 March 2023.

Amendments/corrigenda issued since publication

Date Text affected

Edition 2.0 2022-08

SYSTEMS REFERENCE DELIVERABLE

Generic smart grid requirements -

Part 1: Specific application of the use case methodology for defining generic smart grid requirements according to the IEC systems approach

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 29.020; 29.240 ISBN 978-2-8322-4434-0

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

Г	JKEWOKD		
IN	TRODUCT	ION	7
1	Scope		8
2	Normativ	ve references	8
3	Terms, c	definitions and abbreviated terms	8
	3.1 Te	rms and definitions	8
		breviated terms	
4	Systems	approach	13
	4.1 A s	systems perspective	13
	4.2 Ap	plying the IEC systems approach to smart energy	13
	4.3 Ma	in areas of work	15
	4.4 Bre	eaking down the scope	16
	4.5 Lin	k with some existing conceptual models	16
5		application of use case methodology for defining generic smart grid	
	·	nents	
		eneral	
		ny the use case methodology is particularly adapted to smart grid	
	5.2.1	General	
	5.2.2 5.2.3	Linking the use case methodology with existing frameworks Notion of role	
		plying the use case methodology to define generic smart grid	∠ 1
		quirements	22
	5.3.1	A customer-centric and business-processes-driven approach	
	5.3.2	Generic smart grid requirements	
	5.4 Ap	proach used to elaborate a consolidated smart grid role model	30
6	UML pro	file for modelling smart grid use cases	31
	6.1 A f	ormal approach of use cases modelling	31
	6.1.1	General	31
	6.1.2	Key principles	31
	6.2 UM	/IL-driven top-down approach methodology	32
	6.2.1	Formalism and objectives	32
	6.2.2	Modelling language	
	6.2.3	Scope and information type classification: diagrams and main elements	
	6.2.4	Key benefits	
	6.2.5	Types of diagrams and views	
_		C use cases UML profile concepts	
7		delling diagrams	
		ormative) Existing Actors Lists	
Ar	nnex B (info	ormative) Content of the use case mapped on IEC 62559-2 template	45
	B.1 De	scription of the use case	45
	B.1.1	Name of use case	
	B.1.2	Version management	
	B.1.3	Scope and objectives of use case	
	B.1.4	Narrative of use case	
	B.1.5	Key performance indicators (KPI)	
	B.1.6	Use case conditions	46

B.1.7	Further information to the use case for classification / mapping	46
B.1.8	General remarks	46
B.2 [Diagrams of use case	46
B.3	Fechnical details	
B.3.1	Actors	
B.3.2	References	
	Step by step analysis of use case	
B.4.1	Overview of scenarios	
B.4.2	Steps of scenarios	
	nformation exchanged	
	Requirements (optional)	
	Custom information (optional)EC 62559-2 UML Modelling	
	nformative) Example of telecommunications related non-functional	49
	its	51
Annex D (ir	nformative) Existing Smart Grid Conceptual Models	52
	y	
gp	,	
Figure 1 –	The GridWise Architecture Council's model (NIST, 2012)	18
· ·	Simplification of the GWAC model (CEN-CENELEC-ETSI, 2014)	
	Smart grid plane domains and hierarchical zones	
•	The Smart Grid Architecture Model (CEN-CENELEC-ETSI, 2014)	20
	Interactions between the use case methodology and the Smart Grid e Model (based on CEN-CENELEC-ETSI, 2014)	21
Figure 6 –	Defining smart grid requirements methodology	23
Figure 7 –	Point of view of a domain role	24
	The first two levels of detail used to capture generic smart grid	25
•	The three levels of detail used to capture generic smart grid requirements.	
Figure 10 -	Generic smart grid functional requirements and non-functional	
•	ts captured in use cases	
•	- Example of representation of a domain's role model	
-	- Example of representation of relations between roles	
Figure 13 -	- Four-layer model architecture	33
	- UML use case profile for the IEC SRD 62913 series aligned with the series	36
Figure 15 -	- Use case overview diagram	37
Figure 16 -	- Domain overview diagram	37
Figure 17 -	- BUC-SUC relations diagram	38
•	- Mapping between use case concepts and architecture concepts	
•	- Domain overview concepts UML model	
•	- Use case overview concepts UML model	
•	- Scenario overview concepts UML model	
•	- Activity overview concepts UML model	
Figure 23 -	- Requirement overview concepts UML model	43

Figure C.1 – Use case mapping to IEC 62559-2	49
Figure C.2 – Use case mapping to IEC 62559-2 – Scenario and activities	50
Figure D.1 – NIST/SGIP Smart Grid Conceptual Model	52
Figure D.2 – M490 domains	53
Table 1 – Differences between business use cases and system use cases	12
Table 2 – Links between SGAM and IEC SRD 62913 series domains	17
Table 3 – Use cases concepts	39
Table C.1 – Example of telecommunications related non-functional requirements	51
Table D.1 – NIST/SGIP domains	52
Table D 2 – SGAM domains	53

INTERNATIONAL ELECTROTECHNICAL COMMISSION

GENERIC SMART GRID REQUIREMENTS -

Part 1: Specific application of the use case methodology for defining generic smart grid requirements according to the IEC systems approach

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC SRD 62913-1, which is a Systems Reference Deliverable, has been prepared by IEC systems committee Smart Energy.

This second edition cancels and replaces the first edition published in 2019. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- it consolidates requirements identification and management and their associated naming rules;
- it leverages IEC SRD 63200:2021, Definition of extended SGAM Smart Energy Grid Reference Architecture Model:
- it highlights links between use case methodology and other tools and methodologies (i.e. TOGAF/ArchiMate as used in IEC 61968-1:2020).

The text of this Systems Reference Deliverable is based on the following documents:

Draft	Report on voting
SyCSmartEnergy /169/DTS	SyCSmartEnergy /204/RVDTS

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Systems Reference Deliverable is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

A list of all parts in the IEC SRD 62913 series, published under the general title *Generic smart grid requirements*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- · replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

IEC SRD 62913 generic smart grid requirements are needed to fulfil the SG3 decision 2 made by the SMB at its February 2010 meeting (SMB/4204/DL, Decision 137/10) requesting the need to describe all the functional and system requirements for all smart grid applications.

The IEC Smart Grid Standardization Roadmap states that "the standardization process should offer a formal path between the application as 'requested' by smart grid (stakeholders) and the standards themselves, i.e. a 'top-down' process", whilst at the same time recognizing that for various reasons in many cases this path has not been the one implemented. This has in turn led to inconsistencies in standards.

The purpose of the IEC systems approach is to ensure and improve the interoperability between smart energy systems and components. This approach is based on the business needs expressed by the market. The main purpose of capturing and sharing generic smart grid requirements is the constitution of a basis for coming standardization work, with standards ensuring and facilitating the deployment of smart grid applications.

A working group has been set up within IEC SyC Smart Energy in order to capture the smart grid requirements derived from the market needs, using a standardized approach based on use cases as described in the IEC 62559 series. This work is building on existing use cases, namely within the IEC when they exist, and is carried out collaboratively with the experts of the relevant technical committees.

The IEC SRD 62913 series will deliver an applicable methodology to draft use cases (IEC SRD 62913-1), clarifying 'who does what' with regards to smart energy use cases, and it will also initiate the process of listing, organizing and making available the use cases which carry the smart energy requirements which should be addressed by the IEC core technical standards (IEC SRD 62913-2 series). The IEC systems approach will require adapted tools and processes to facilitate its implementation, and until they are available to the IEC National Committees and experts, the IEC SRD 62913-2 series should be understood as the first stepping stone towards this systems approach implementation. IEC SRD 62913-3 will be a roles database, based on a harmonized naming methodology, to ensure consistency when drafting smart energy use cases. This will provide a consistent and ready-to-use framework for all standardization stakeholders.

Use cases in the top-down approach of IEC SyC Smart Energy (C/1845/RV) are tools to identify smart grid requirements used to assess situations in standards (gaps or overlaps) and in that way contribute to interoperability. These requirements can also be used further as input for interoperability profiles for the testing phase.

These requirements should then feed into the work carried out by IEC SyC Smart Energy with other technical committees in order to ensure the technical standards are developed taking into account the needs and priorities of the smart grid market.

This document corresponds to the specific application of the use case methodology for defining generic smart grid requirements according to the IEC systems approach.

GENERIC SMART GRID REQUIREMENTS -

Part 1: Specific application of the use case methodology for defining generic smart grid requirements according to the IEC systems approach

1 Scope

This part of IEC SRD 62913 describes a common approach for IEC technical committees to define generic smart grid requirements for further standardization work. It uses as input the use case methodology defined as part of the IEC 62559 series, and provides a more detailed methodology for describing use cases and extracting requirements from these use cases. This will achieve a consistent and homogeneous description of generic requirements for the different areas which make up the smart grid environment.

2 Normative references

There are no normative references in this document.

3 Terms, definitions and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1.1

activity

part of a scenario that can be executed by one or more roles

Note 1 to entry: The details of an activity are described through actions. However, if it is necessary, intermediate levels can be created where activities describe an activity.

3.1.2

actor

entity that communicates and interacts

Note 1 to entry: These actors can include people, software applications, systems, databases, and even the power system itself.

Note 2 to entry: In IEC SRD 62913 this term includes the concepts of business role and system role involved in use cases.

[SOURCE: IEC 62559-2:2015, 3.2]

3.1.3

business case

explanation or set of reasons describing how a business decision will improve a business, product, etc. and how it will affect costs and profits and attract investments

Note 1 to entry: Equivalent to strategic goals and principles which drive business processes.